Detection of Cigar Defect Based on the Improved YOLOv5 Algorithm

被引:0
|
作者
Yang, Xinan [1 ]
Gao, Sen [2 ]
Xia, Chen [3 ]
Zhang, Bo [3 ]
Chen, Rui [2 ]
Gao, Jie [2 ]
Zhu, Wenkui [1 ]
机构
[1] CNTC, Zhengzhou Tobacco Res Inst, Zhengzhou, Peoples R China
[2] China Tobacco Ind Co Ltd, Great Wall Cigar Factory Sichuan, Deyang, Peoples R China
[3] China Tobacco Zhejiang Ind Co Ltd, Technol Ctr, Hangzhou, Peoples R China
关键词
YOLOv5; BiFPN; EPSA; manufactured cigar; detection;
D O I
10.1109/SEAI62072.2024.10674565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To achieve the automatic detection of blue spots, plaques, and desquamation defects of manufactured cigars, an improved YOLOv5 model is proposed for the high-precision detection of manufactured cigar defects in the production process. The EPSA attention mechanism is added to the YOLOv5 model to make the network focused on the defect location. The PAN structure is replaced by the BiFPN structure in the Neck part of the model, which enhances the multi-scale fusion of features. Also, with the introduction of BiFPN in YOLOv5, the performances of the network with different attention mechanisms are compared. The experimental results show that the YOLOv5BE improves by 2.69 % at the mAP@0.5 compared with YOLOv5, reaching 94.15%. Therefore, the improved YOLOv5 model can effectively detect blue spots, disease spots, and desquamation defects of manufactured cigars, and provide technical support for the intelligent detection of manufactured cigars.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 50 条
  • [1] Fabric defect detection algorithm based on improved YOLOv5
    Li, Feng
    Xiao, Kang
    Hu, Zhengpeng
    Zhang, Guozheng
    VISUAL COMPUTER, 2024, 40 (04): : 2309 - 2324
  • [2] Improved Plate Defect Detection Algorithm Based on YOLOv5
    Wang, Zijie
    Wang, Lan
    Zheng, Sihui
    IOT AS A SERVICE, IOTAAS 2023, 2025, 585 : 371 - 384
  • [3] Fabric defect detection algorithm based on improved YOLOv5
    Feng Li
    Kang Xiao
    Zhengpeng Hu
    Guozheng Zhang
    The Visual Computer, 2024, 40 : 2309 - 2324
  • [4] Insulator defect detection based on improved YOLOv5 algorithm
    Wang, Yongheng
    Li, Qin
    Liu, Yachong
    Wang, Chao
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 770 - 775
  • [5] Bearing defect detection based on the improved YOLOv5 algorithm
    Li, Kangning
    Jiao, Peigang
    Ding, Jiaming
    Du, Weibo
    PLOS ONE, 2024, 19 (10):
  • [6] Improved Fabric Defect Detection Algorithm of YOLOv5
    Ma, Ahui
    Zhu, Shuangwu
    Li, Choudan
    Ma, Xiaotong
    Wang, Shihao
    Computer Engineering and Applications, 2023, 59 (10) : 244 - 252
  • [7] An Improved YOLOv5 Algorithm for Tyre Defect Detection
    Xie, Mujun
    Bian, Heyu
    Jiang, Changhong
    Zheng, Zhong
    Wang, Wei
    ELECTRONICS, 2024, 13 (11)
  • [8] Railway fastener defect detection based on improved YOLOv5 algorithm
    Su, Zhitong
    Han, Kai
    Song, Wei
    Ning, Keqing
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1923 - 1927
  • [9] Lightweight Surface Defect Detection Algorithm Based on Improved YOLOv5
    Yang, Kaijun
    Chen, Tao
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 798 - 802
  • [10] A rail fastener defect detection algorithm based on improved YOLOv5
    Wang, Ling
    Zang, Qiuyu
    Zhang, Kehua
    Wu, Lintong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2024, 238 (07) : 851 - 862