Car Detection for Smart Parking Systems Based on Improved YOLOv5

被引:0
|
作者
Nguyen, Duy-Linh [1 ]
Vo, Xuan-Thuy [1 ]
Priadana, Adri [1 ]
Jo, Kang-Hyun [1 ]
机构
[1] Univ Ulsan, Dept Elect Elect & Comp Engn, Ulsan 44610, South Korea
基金
新加坡国家研究基金会;
关键词
Convolutional neural network (CNN); EfficientNet; PP-LCNet; parking management; YOLOv5;
D O I
10.1142/S2196888823500185
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, YOLOv5 is one of the most popular object detection network architectures used in real-time and industrial systems. Traffic management and regulation are typical applications. To take advantage of the YOLOv5 network and develop a parking management tool, this paper proposes a car detection network based on redesigning the YOLOv5 network architecture. This research focuses on network parameter optimization using lightweight modules from EfficientNet and PP-LCNet architectures. On the other hand, this work also presents an aerial view dataset for car detection tasks in the parking, named the AVPL. The proposed network is trained and evaluated on two benchmark datasets which are the Car Parking Lot Dataset and the Pontifical Catholic University of Parana+ Dataset and one proposed dataset. The experiments are reported on mAP@0.5 and mAP@0.5:0.95 measurement units. As a result, this network achieves the best performances at 95.8%, 97.4%, and 97.0% of mAP@0.5 on the Car Parking Lot Dataset, the Pontifical Catholic University of Parana+ Dataset, and the proposed AVPL dataset, respectively. A set of demonstration videos and the proposed dataset are available here: https://bit.ly/3YUoSwi.
引用
收藏
页码:195 / 209
页数:15
相关论文
共 50 条
  • [21] Research on improved algorithm for helmet detection based on YOLOv5
    Shan, Chun
    Liu, Hongming
    Yu, Yu
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [22] Fabric defect detection algorithm based on improved YOLOv5
    Li, Feng
    Xiao, Kang
    Hu, Zhengpeng
    Zhang, Guozheng
    VISUAL COMPUTER, 2024, 40 (04): : 2309 - 2324
  • [23] An insulator target detection algorithm based on improved YOLOv5
    Zeng, Bing
    Zhou, Zhihao
    Zhou, Yu
    He, Dilin
    Liao, Zhanpeng
    Jin, Zihan
    Zhou, Yulu
    Yi, Kexin
    Xie, Yunmin
    Zhang, Wenhua
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [24] Pavement damage detection model based on improved YOLOv5
    He T.
    Li H.
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2024, 57 (02): : 96 - 106
  • [25] An Improved Waste Detection and Classification Model Based on YOLOV5
    Hu, Fan
    Qian, Pengjiang
    Jiang, Yizhang
    Yao, Jian
    INTELLIGENT COMPUTING METHODOLOGIES, PT III, 2022, 13395 : 741 - 754
  • [26] Substation Equipment Abnormity Detection Based on Improved YOLOv5
    Zhang, Yu
    Li, Weixing
    Zhou, Jian
    Gao, Yan
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6654 - 6659
  • [27] Driver distracted driving detection based on improved YOLOv5
    Chen R.-X.
    Hu C.-C.
    Hu X.-L.
    Yang L.-X.
    Zhang J.
    He J.-L.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (04): : 959 - 968
  • [28] Vehicle And Pedestrian Detection Algorithm Based on Improved YOLOv5
    Sun, Jiuhan
    Wang, Zhifeng
    IAENG International Journal of Computer Science, 2023, 50 (04)
  • [29] Improved Small Object Detection Algorithm Based on YOLOv5
    Xu, Bo
    Gao, Bin
    Li, Yunhu
    IEEE INTELLIGENT SYSTEMS, 2024, 39 (05) : 57 - 65
  • [30] An Improved Distraction Behavior Detection Algorithm Based on YOLOv5
    Zhou, Keke
    Zheng, Guoqiang
    Zhai, Huihui
    Lv, Xiangshuai
    Zhang, Weizhen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (02): : 2571 - 2585