Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data

被引:7
|
作者
Geras, Agnieszka [1 ,2 ]
Shafighi, Shadi Darvish [2 ,3 ]
Domzal, Kacper [2 ]
Filipiuk, Igor [2 ]
Raczkowski, Lukasz [2 ]
Szymczak, Paulina [2 ]
Toosi, Hosein [4 ]
Kaczmarek, Leszek [5 ]
Koperski, Lukasz [6 ]
Lagergren, Jens [4 ]
Nowis, Dominika [7 ]
Szczurek, Ewa [2 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, Poland
[2] Univ Warsaw, Fac Math Informat & Mech, Warsaw, Poland
[3] Sorbonne Univ, CNRS, IBPS, Lab Biol Computat & Quantitat UMR, Paris, France
[4] KTH Royal Inst Technol, Stockholm, Sweden
[5] Polish Acad Sci, BRAINCITY, Nencki Inst Expt Biol, Warsaw, Poland
[6] Med Univ Warsaw, Dept Pathol, Warsaw, Poland
[7] Med Univ Warsaw, Lab Expt Med, Warsaw, Poland
关键词
Probabilistic model; MCMC sampling; Spatial transcriptomics data; Cell types; EXPRESSION; BRAIN;
D O I
10.1186/s13059-023-02951-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we propose an innovative probabilistic model, Celloscope, that utilizes established prior knowledge on marker genes for cell type deconvolution from spatial transcriptomics data. Celloscope outperforms other methods on simulated data, successfully indicates known brain structures and spatially distinguishes between inhibitory and excitatory neuron types based in mouse brain tissue, and dissects large heterogeneity of immune infiltrate composition in prostate gland tissue.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] A comprehensive comparison on cell-type composition inference for spatial transcriptomics data
    Chen, Jiawen
    Liu, Weifang
    Luo, Tianyou
    Yu, Zhentao
    Jiang, Minzhi
    Wen, Jia
    Gupta, Gaorav P.
    Giusti, Paola
    Zhu, Hongtu
    Yang, Yuchen
    Li, Yun
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (04)
  • [22] SSMD: a semi-supervised approach for a robust cell type identification and deconvolution of mouse transcriptomics data
    Lu, Xiaoyu
    Tu, Szu-Wei
    Chang, Wennan
    Wan, Changlin
    Wang, Jiashi
    Zang, Yong
    Ramdas, Baskar
    Kapur, Reuben
    Lu, Xiongbin
    Cao, Sha
    Zhang, Chi
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [23] 'Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno' (vol 51, pg e115, 2023)
    Shi, Xingjie
    Yang, Yi
    Ma, Xiaohui
    Zhou, Yong
    Guo, Zhenxing
    Wang, Chaolong
    Liu, Jin
    [J]. NUCLEIC ACIDS RESEARCH, 2024, 52 (02) : 1003 - 1003
  • [24] scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data
    Zhai, Yuyao
    Chen, Liang
    Deng, Minghua
    [J]. BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [25] Deconvolution of Bulk Gene Expression Profiles with Single-Cell Transcriptomics to Develop a Cell Type Composition-Based Prognostic Model for Acute Myeloid Leukemia
    Dai, Chengguqiu
    Chen, Mengya
    Wang, Chaolong
    Hao, Xingjie
    [J]. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [26] ScType enables fast and accurate cell type identification from spatial transcriptomics data
    Nader, Kristen
    Tasci, Misra
    Ianevski, Aleksandr
    Erickson, Andrew
    Verschuren, Emmy W.
    Aittokallio, Tero
    Miihkinen, Mitro
    [J]. BIOINFORMATICS, 2024, 40 (07)
  • [27] A count-based model for delineating cell-cell interactions in spatial transcriptomics data
    Sarkar, Hirak
    Chitra, Uthsav
    Gold, Julian
    Raphael, Benjamin J.
    [J]. BIOINFORMATICS, 2024, 40 : i481 - i489
  • [28] Adjustment of scRNA-seq data to improve cell-type decomposition of spatial transcriptomics
    Wang, Lanying
    Hu, Yuxuan
    Gao, Lin
    [J]. BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [29] Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
    Brendan F. Miller
    Feiyang Huang
    Lyla Atta
    Arpan Sahoo
    Jean Fan
    [J]. Nature Communications, 13
  • [30] Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
    Miller, Brendan F.
    Huang, Feiyang
    Atta, Lyla
    Sahoo, Arpan
    Fan, Jean
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)