Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data

被引:54
|
作者
Miller, Brendan F. [1 ,2 ]
Huang, Feiyang [1 ,2 ]
Atta, Lyla [1 ,2 ]
Sahoo, Arpan [1 ,3 ]
Fan, Jean [1 ,2 ,3 ]
机构
[1] Johns Hopkins Univ, Whiting Sch Engn, Ctr Computat Biol, Baltimore, MD 21211 USA
[2] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
基金
美国国家卫生研究院;
关键词
GENOME-WIDE EXPRESSION; ADULT; MICROENVIRONMENT; HETEROGENEITY; PATHWAY; CANCER; SEQ;
D O I
10.1038/s41467-022-30033-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent technological advancements have enabled spatially resolved transcriptomic profiling but at multi-cellular pixel resolution, thereby hindering the identification of cell-type-specific spatial patterns and gene expression variation. To address this challenge, we develop STdeconvolve as a reference-free approach to deconvolve underlying cell types comprising such multi-cellular pixel resolution spatial transcriptomics (ST) datasets. Using simulated as well as real ST datasets from diverse spatial transcriptomics technologies comprising a variety of spatial resolutions such as Spatial Transcriptomics, 10X Visium, DBiT-seq, and Slide-seq, we show that STdeconvolve can effectively recover cell-type transcriptional profiles and their proportional representation within pixels without reliance on external single-cell transcriptomics references. STdeconvolve provides comparable performance to existing reference-based methods when suitable single-cell references are available, as well as potentially superior performance when suitable single-cell references are not available. STdeconvolve is available as an open-source R software package with the source code available at https://github.com/JEFworks-Lab/STdeconvolve.
引用
收藏
页数:13
相关论文
共 9 条
  • [1] Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
    Brendan F. Miller
    Feiyang Huang
    Lyla Atta
    Arpan Sahoo
    Jean Fan
    [J]. Nature Communications, 13
  • [2] EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning
    Tu, Jia-Juan
    Li, Hui-Sheng
    Yan, Hong
    Zhang, Xiao-Fei
    [J]. BIOINFORMATICS, 2023, 39 (01)
  • [3] Reference-free deconvolution of DNA methylation data and mediation by cell composition effects
    Houseman, E. Andres
    Kile, Molly L.
    Christiani, David C.
    Ince, Tan A.
    Kelsey, Karl T.
    Marsit, Carmen J.
    [J]. BMC BIOINFORMATICS, 2016, 17
  • [4] Reference-free deconvolution of DNA methylation data and mediation by cell composition effects
    E. Andres Houseman
    Molly L. Kile
    David C. Christiani
    Tan A. Ince
    Karl T. Kelsey
    Carmen J. Marsit
    [J]. BMC Bioinformatics, 17
  • [5] Benchmarking cell -type clustering methods for spatially resolved transcriptomics data
    Cheng, Andrew
    Hu, Guanyu
    Li, Wei Vivian
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [6] consICA: an R package for robust reference-free deconvolution of multi-omics data
    Chepeleva, Maryna
    Kaoma, Tony
    Zinovyev, Andrei
    Toth, Reka
    Nazarov, Petr, V
    [J]. BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [7] THUNDER: A reference-free deconvolution method to infer cell type proportions from bulk Hi-C data
    Rowland, Bryce
    Huh, Ruth
    Hou, Zoey
    Crowley, Cheynna
    Wen, Jia
    Shen, Yin
    Hu, Ming
    Giusti-Rodriguez, Paola
    Sullivan, Patrick F.
    Li, Yun
    [J]. PLOS GENETICS, 2022, 18 (03):
  • [8] Guidelines for cell-type heterogeneity quantification based on a comparative analysis of reference-free DNA methylation deconvolution software
    Decamps, Clementine
    Prive, Florian
    Bacher, Raphael
    Jost, Daniel
    Waguet, Arthur
    Achard, Sophie
    Achard, Sophie
    Amblard, Elise
    Bacher, Raphael
    Bergmann, Fabian
    Blum, Michael
    Blum, Yuna
    Bottaz-Bosson, Guillaume
    Broseus, Lucile
    Chuffart, Florent
    Decamps, Clementine
    Devijver, Emilie
    Durif, Ghislain
    Feofanov, Vassili
    Houseman, Eugene Andres
    Gallopin, Melina
    Jedynak, Paulina
    Jonchere, Vincent
    Van de Geer, Ellen
    Jumentier, Basile
    Kaoma, Tony
    Lurie, Eugene
    Lutsik, Pavlo
    Markowski, Julia
    Melnykova, Anna
    Merlevede, Jane
    Nazarov, Petr
    Nguyen, Ngoc Ha
    Permiakova, Olga
    Prive, Florian
    Richard, Magali
    Rolland, Matthieu
    Scherer, Michael
    Spill, Yannick
    Houseman, Eugene Andres
    Lurie, Eugene
    Lutsik, Pavlo
    Milosavljevic, Aleksandar
    Scherer, Michael
    Blum, Michael G. B.
    Richard, Magali
    [J]. BMC BIOINFORMATICS, 2020, 21 (01)
  • [9] Guidelines for cell-type heterogeneity quantification based on a comparative analysis of reference-free DNA methylation deconvolution software
    Clémentine Decamps
    Florian Privé
    Raphael Bacher
    Daniel Jost
    Arthur Waguet
    Eugene Andres Houseman
    Eugene Lurie
    Pavlo Lutsik
    Aleksandar Milosavljevic
    Michael Scherer
    Michael G. B. Blum
    Magali Richard
    [J]. BMC Bioinformatics, 21