'Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno' (vol 51, pg e115, 2023)

被引:0
|
作者
Shi, Xingjie
Yang, Yi
Ma, Xiaohui
Zhou, Yong
Guo, Zhenxing
Wang, Chaolong
Liu, Jin
机构
关键词
D O I
10.1093/nar/gkad1229
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
引用
收藏
页码:1003 / 1003
页数:1
相关论文
共 8 条
  • [1] Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno
    Shi, Xingjie
    Yang, Yi
    Ma, Xiaohui
    Zhou, Yong
    Guo, Zhenxing
    Wang, Chaolong
    Liu, Jin
    [J]. NUCLEIC ACIDS RESEARCH, 2023, 51 (22) : e115 - e115
  • [2] Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
    Agnieszka Geras
    Shadi Darvish Shafighi
    Kacper Domżał
    Igor Filipiuk
    Alicja Rączkowska
    Paulina Szymczak
    Hosein Toosi
    Leszek Kaczmarek
    Łukasz Koperski
    Jens Lagergren
    Dominika Nowis
    Ewa Szczurek
    [J]. Genome Biology, 24
  • [3] Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
    Geras, Agnieszka
    Shafighi, Shadi Darvish
    Domzal, Kacper
    Filipiuk, Igor
    Raczkowski, Lukasz
    Szymczak, Paulina
    Toosi, Hosein
    Kaczmarek, Leszek
    Koperski, Lukasz
    Lagergren, Jens
    Nowis, Dominika
    Szczurek, Ewa
    [J]. GENOME BIOLOGY, 2023, 24 (01)
  • [4] Reconstructing growth and dynamic trajectories from single-cell transcriptomics data (vol6, pg 5, 2023)
    Sha, Yutong
    Qiu, Yuchi
    Zhou, Peijie
    Nie, Qing
    [J]. NATURE MACHINE INTELLIGENCE, 2024, 6 (01) : 119 - 119
  • [5] Cell type identification in spatial transcriptomics data can be improved by leveraging cell-type-informative paired tissue images using a Bayesian probabilistic model
    Zubair, Asif
    Chapple, Richard H.
    Natarajan, Sivaraman
    Wright, William C.
    Pan, Min
    Lee, Hyeong-Min
    Tillman, Heather
    Easton, John
    Geeleher, Paul
    [J]. NUCLEIC ACIDS RESEARCH, 2022, : E180
  • [6] Adjustment of scRNA-seq data to improve cell-type decomposition of spatial transcriptomics (vol 25, bbae063, 2024)
    Wang, Lanying
    Hu, Yuxuan
    Gao, Lin
    [J]. BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [7] Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data (vol 3, pg 644, 2023)
    Chen, Xi
    Wang, Yuan
    Cappuccio, Antonio
    Cheng, Wan-Sze
    Zamojski, Frederique Ruf
    Nair, Venugopalan D.
    Miller, Clare M.
    Rubenstein, Aliza B.
    Nudelman, German
    Tadych, Alicja
    Theesfeld, Chandra L.
    Vornholt, Alexandria
    George, Mary-Catherine
    Ruffin, Felicia
    Dagher, Michael
    Chawla, Daniel G.
    Soares-Schanoski, Alessandra
    Spurbeck, Rachel R.
    Ndhlovu, Lishomwa C.
    Sebra, Robert
    Kleinstein, Steven H.
    Letizia, Andrew G.
    Ramos, Irene
    Fowler Jr, Vance G.
    Woods, Christopher W.
    Zaslavsky, Elena
    Troyanskaya, Olga G.
    Sealfon, Stuart C.
    [J]. NATURE COMPUTATIONAL SCIENCE, 2023, 3 (09): : 805 - 805
  • [8] Development of a deep learning model for cell type mapping in colorectal cancer using H&E images leveraging image-based spatial transcriptomics data
    Cook, Seungho
    Lee, Dongjoo
    Lim, Myunghyun
    Lee, Jae Eun
    Lee, Daeseung
    Im, Hyung-Jun
    Pyo, Jung-Soo
    Na, Kwon Joong
    Choi, Hongyoon
    [J]. CANCER RESEARCH, 2024, 84 (06)