Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno

被引:1
|
作者
Shi, Xingjie [1 ]
Yang, Yi [2 ]
Ma, Xiaohui [3 ]
Zhou, Yong [1 ]
Guo, Zhenxing [4 ]
Wang, Chaolong [5 ]
Liu, Jin [4 ]
机构
[1] East China Normal Univ, Acad Stat & Interdisciplinary Sci, Sch Stat, KLATASDS MOE, Shanghai 200062, Peoples R China
[2] Southeast Univ, Sch Life Sci & Technol, Key Lab Dev Genes & Human Dis, Nanjing 210018, Peoples R China
[3] Nanjing Univ, Coll Life Sci, Nanjing 210033, Peoples R China
[4] Chinese Univ Hong Kong Shenzhen, Sch Data Sci, Shenzhen 518172, Peoples R China
[5] Huazhong Univ Sci & Technol, Tongji Med Coll, Sch Publ Hlth, Dept Epidemiol & Biostat, Wuhan 430070, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
CELL RNA-SEQ; GENE-EXPRESSION; DIFFERENTIATION; DOMAINS; PATTERN;
D O I
10.1093/nar/gkad1023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the analysis of both single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) data, classifying cells/spots into cell/domain types is an essential analytic step for many secondary analyses. Most of the existing annotation methods have been developed for scRNA-seq datasets without any consideration of spatial information. Here, we present SpatialAnno, an efficient and accurate annotation method for spatial transcriptomics datasets, with the capability to effectively leverage a large number of non-marker genes as well as 'qualitative' information about marker genes without using a reference dataset. Uniquely, SpatialAnno estimates low-dimensional embeddings for a large number of non-marker genes via a factor model while promoting spatial smoothness among neighboring spots via a Potts model. Using both simulated and four real spatial transcriptomics datasets from the 10x Visium, ST, Slide-seqV1/2, and seqFISH platforms, we showcase the method's improved spatial annotation accuracy, including its robustness to the inclusion of marker genes for irrelevant cell/domain types and to various degrees of marker gene misspecification. SpatialAnno is computationally scalable and applicable to SRT datasets from different platforms. Furthermore, the estimated embeddings for cellular biological effects facilitate many downstream analyses. [GRAPHICS] .
引用
收藏
页码:e115 / e115
页数:15
相关论文
共 50 条
  • [1] 'Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno' (vol 51, pg e115, 2023)
    Shi, Xingjie
    Yang, Yi
    Ma, Xiaohui
    Zhou, Yong
    Guo, Zhenxing
    Wang, Chaolong
    Liu, Jin
    [J]. NUCLEIC ACIDS RESEARCH, 2024, 52 (02) : 1003 - 1003
  • [2] Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
    Agnieszka Geras
    Shadi Darvish Shafighi
    Kacper Domżał
    Igor Filipiuk
    Alicja Rączkowska
    Paulina Szymczak
    Hosein Toosi
    Leszek Kaczmarek
    Łukasz Koperski
    Jens Lagergren
    Dominika Nowis
    Ewa Szczurek
    [J]. Genome Biology, 24
  • [3] Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
    Geras, Agnieszka
    Shafighi, Shadi Darvish
    Domzal, Kacper
    Filipiuk, Igor
    Raczkowski, Lukasz
    Szymczak, Paulina
    Toosi, Hosein
    Kaczmarek, Leszek
    Koperski, Lukasz
    Lagergren, Jens
    Nowis, Dominika
    Szczurek, Ewa
    [J]. GENOME BIOLOGY, 2023, 24 (01)
  • [4] Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
    Alma Andersson
    Joseph Bergenstråhle
    Michaela Asp
    Ludvig Bergenstråhle
    Aleksandra Jurek
    José Fernández Navarro
    Joakim Lundeberg
    [J]. Communications Biology, 3
  • [5] Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
    Andersson, Alma
    Bergenstrahle, Joseph
    Asp, Michaela
    Bergenstrahle, Ludvig
    Jurek, Aleksandra
    Fernandez Navarro, Jose
    Lundeberg, Joakim
    [J]. COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [6] Cell type identification in spatial transcriptomics data can be improved by leveraging cell-type-informative paired tissue images using a Bayesian probabilistic model
    Zubair, Asif
    Chapple, Richard H.
    Natarajan, Sivaraman
    Wright, William C.
    Pan, Min
    Lee, Hyeong-Min
    Tillman, Heather
    Easton, John
    Geeleher, Paul
    [J]. NUCLEIC ACIDS RESEARCH, 2022, : E180
  • [7] A comprehensive comparison on cell-type composition inference for spatial transcriptomics data
    Chen, Jiawen
    Liu, Weifang
    Luo, Tianyou
    Yu, Zhentao
    Jiang, Minzhi
    Wen, Jia
    Gupta, Gaorav P.
    Giusti, Paola
    Zhu, Hongtu
    Yang, Yuchen
    Li, Yun
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (04)
  • [8] Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST
    Liu, Wei
    Liao, Xu
    Luo, Ziye
    Yang, Yi
    Lau, Mai Chan
    Jiao, Yuling
    Shi, Xingjie
    Zhai, Weiwei
    Ji, Hongkai
    Yeong, Joe
    Liu, Jin
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [9] FISHFactor: a probabilistic factor model for spatial transcriptomics data with subcellular resolution
    Walter, Florin C.
    Stegle, Oliver
    Velten, Britta
    [J]. BIOINFORMATICS, 2023, 39 (04)
  • [10] Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST
    Wei Liu
    Xu Liao
    Ziye Luo
    Yi Yang
    Mai Chan Lau
    Yuling Jiao
    Xingjie Shi
    Weiwei Zhai
    Hongkai Ji
    Joe Yeong
    Jin Liu
    [J]. Nature Communications, 14