Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data

被引:7
|
作者
Geras, Agnieszka [1 ,2 ]
Shafighi, Shadi Darvish [2 ,3 ]
Domzal, Kacper [2 ]
Filipiuk, Igor [2 ]
Raczkowski, Lukasz [2 ]
Szymczak, Paulina [2 ]
Toosi, Hosein [4 ]
Kaczmarek, Leszek [5 ]
Koperski, Lukasz [6 ]
Lagergren, Jens [4 ]
Nowis, Dominika [7 ]
Szczurek, Ewa [2 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, Poland
[2] Univ Warsaw, Fac Math Informat & Mech, Warsaw, Poland
[3] Sorbonne Univ, CNRS, IBPS, Lab Biol Computat & Quantitat UMR, Paris, France
[4] KTH Royal Inst Technol, Stockholm, Sweden
[5] Polish Acad Sci, BRAINCITY, Nencki Inst Expt Biol, Warsaw, Poland
[6] Med Univ Warsaw, Dept Pathol, Warsaw, Poland
[7] Med Univ Warsaw, Lab Expt Med, Warsaw, Poland
关键词
Probabilistic model; MCMC sampling; Spatial transcriptomics data; Cell types; EXPRESSION; BRAIN;
D O I
10.1186/s13059-023-02951-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we propose an innovative probabilistic model, Celloscope, that utilizes established prior knowledge on marker genes for cell type deconvolution from spatial transcriptomics data. Celloscope outperforms other methods on simulated data, successfully indicates known brain structures and spatially distinguishes between inhibitory and excitatory neuron types based in mouse brain tissue, and dissects large heterogeneity of immune infiltrate composition in prostate gland tissue.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
    Agnieszka Geras
    Shadi Darvish Shafighi
    Kacper Domżał
    Igor Filipiuk
    Alicja Rączkowska
    Paulina Szymczak
    Hosein Toosi
    Leszek Kaczmarek
    Łukasz Koperski
    Jens Lagergren
    Dominika Nowis
    Ewa Szczurek
    [J]. Genome Biology, 24
  • [2] Benchmarking of cell type deconvolution pipelines for transcriptomics data
    Cobos, Francisco Avila
    Alquicira-Hernandez, Jose
    Powell, Joseph E.
    Mestdagh, Pieter
    De Preter, Katleen
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno
    Shi, Xingjie
    Yang, Yi
    Ma, Xiaohui
    Zhou, Yong
    Guo, Zhenxing
    Wang, Chaolong
    Liu, Jin
    [J]. NUCLEIC ACIDS RESEARCH, 2023, 51 (22) : e115 - e115
  • [4] Spatially informed cell-type deconvolution for spatial transcriptomics
    Ma, Ying
    Zhou, Xiang
    [J]. NATURE BIOTECHNOLOGY, 2022, 40 (09) : 1349 - +
  • [5] Spatially informed cell-type deconvolution for spatial transcriptomics
    Ying Ma
    Xiang Zhou
    [J]. Nature Biotechnology, 2022, 40 (9) : 1349 - 1359
  • [6] Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics
    Sang-aram, Chananchida
    Browaeys, Robin
    Seurinck, Ruth
    Saeys, Yvan
    [J]. ELIFE, 2024, 12
  • [7] SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics
    Liu, Zhiyuan
    Wu, Dafei
    Zhai, Weiwei
    Ma, Liang
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [8] SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics
    Zhiyuan Liu
    Dafei Wu
    Weiwei Zhai
    Liang Ma
    [J]. Nature Communications, 14
  • [9] Author Correction: Benchmarking of cell type deconvolution pipelines for transcriptomics data
    Francisco Avila Cobos
    José Alquicira-Hernandez
    Joseph E. Powell
    Pieter Mestdagh
    Katleen De Preter
    [J]. Nature Communications, 11
  • [10] FISHFactor: a probabilistic factor model for spatial transcriptomics data with subcellular resolution
    Walter, Florin C.
    Stegle, Oliver
    Velten, Britta
    [J]. BIOINFORMATICS, 2023, 39 (04)