Spectral radius conditions for fractional [a, b]-covered graphs

被引:2
|
作者
Wang, Junjie [1 ]
Zheng, Jiaxin [1 ]
Chen, Yonglei [2 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
[2] Lanzhou Jiaotong Univ, Inst Appl Math, Lanzhou 730070, Peoples R China
关键词
Spectral radius; Fractional[ab]-factor; Fractional[ab]-covered graph; SIGNLESS LAPLACIAN; SUFFICIENT CONDITION; EVEN;
D O I
10.1016/j.laa.2023.02.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is called fractional [a, b]-covered if for every edge e of G there is a fractional [a, b]-factor with the indicator function h such that h(e) = 1. In this paper, we provide a tight spectral radius condition for graphs being fractional [a, b]-covered. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] On the spectral radius of bipartite graphs
    Fan, Dandan
    Wang, Guoping
    Zao, Yuying
    UTILITAS MATHEMATICA, 2019, 113 : 149 - 158
  • [42] The Aα-spectral radius of dense graphs
    Liu, Muhuo
    Chen, Chaohui
    Guo, Shu-Guang
    Peng, Jiarong
    Chen, Tianyuan
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (06): : 1044 - 1053
  • [43] THE LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Li, Jianxi
    Shiu, Wai Chee
    Chang, An
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) : 835 - 847
  • [44] Toughness and spectral radius in graphs
    Chen, Yuanyuan
    Fan, Dandan
    Lin, Huiqiu
    arXiv, 2023,
  • [45] A note on the Aα-spectral radius of graphs
    Lin, Huiqiu
    Huang, Xing
    Xue, Jie
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 557 : 430 - 437
  • [46] SPECTRAL RADIUS AND HAMILTONICITY OF GRAPHS
    Yu, Guidong
    Fang, Yi
    Fan, Yizheng
    Cai, Gaixiang
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (04) : 951 - 974
  • [47] The Laplacian spectral radius of graphs
    Jianxi Li
    Wai Chee Shiu
    An Chang
    Czechoslovak Mathematical Journal, 2010, 60 : 835 - 847
  • [48] Spectral radius and matchings in graphs
    Suil, O.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 316 - 324
  • [49] Toughness and spectral radius in graphs
    Chen, Yuanyuan
    Fan, Dandan
    Lin, Huiqiu
    DISCRETE MATHEMATICS, 2024, 347 (12)
  • [50] On the spectral radius of bicyclic graphs
    Yu, AM
    Tian, F
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2004, (52) : 91 - 101