THE LAPLACIAN SPECTRAL RADIUS OF GRAPHS

被引:3
|
作者
Li, Jianxi [1 ]
Shiu, Wai Chee [2 ]
Chang, An [3 ]
机构
[1] Zhangzhou Normal Univ, Dept Math & Informat Sci, Zhangzhou, Fujian, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Fuzhou Univ, Ctr Discrete Math, Software Coll, Fuzhou 350002, Fujian, Peoples R China
基金
美国国家科学基金会;
关键词
graph; Laplacian spectral radius; bounds; NONREGULAR GRAPHS; LARGEST EIGENVALUE; BOUNDS;
D O I
10.1007/s10587-010-0052-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Laplacian spectral radius of a graph is the largest eigenvalue of the ass ociated Laplacian matrix. In this paper, we improve Shi's upper bound for the Laplacian spectral radius of irregular graphs and present some new bounds for the Laplacian spectral radius of some classes of graphs.
引用
收藏
页码:835 / 847
页数:13
相关论文
共 50 条
  • [1] The Laplacian spectral radius of graphs
    Jianxi Li
    Wai Chee Shiu
    An Chang
    Czechoslovak Mathematical Journal, 2010, 60 : 835 - 847
  • [2] On the Laplacian Spectral Radius of Graphs
    Xu, Guanghui
    Xu, Changqing
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 164 - 167
  • [3] Bounds for the Laplacian spectral radius of graphs
    Liu, Huiqing
    Lu, Mei
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (01): : 113 - 119
  • [4] On the distance Laplacian spectral radius of graphs
    Lin, Hongying
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 : 265 - 275
  • [5] The Laplacian spectral radius of graphs on surfaces
    Lin, Liang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) : 973 - 977
  • [6] The Laplacian spectral radius of some graphs
    Li, Jianxi
    Shiu, Wai Chee
    Chan, Wai Hong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (1-2) : 99 - 103
  • [7] Bounds on the (Laplacian) spectral radius of graphs
    Shi, Lingsheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) : 755 - 770
  • [8] On the distance Laplacian spectral radius of bipartite graphs
    Niu, Aihong
    Fan, Dandan
    Wang, Guoping
    DISCRETE APPLIED MATHEMATICS, 2015, 186 : 207 - 213
  • [9] On the signless Laplacian spectral radius of irregular graphs
    Ning, Wenjie
    Li, Hao
    Lu, Mei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2280 - 2288
  • [10] On the distance Laplacian spectral radius of bicyclic graphs
    Xu, Nannan
    Yu, Aimei
    Hao, Rong-Xia
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4654 - 4674