THE LAPLACIAN SPECTRAL RADIUS OF GRAPHS

被引:3
|
作者
Li, Jianxi [1 ]
Shiu, Wai Chee [2 ]
Chang, An [3 ]
机构
[1] Zhangzhou Normal Univ, Dept Math & Informat Sci, Zhangzhou, Fujian, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Fuzhou Univ, Ctr Discrete Math, Software Coll, Fuzhou 350002, Fujian, Peoples R China
基金
美国国家科学基金会;
关键词
graph; Laplacian spectral radius; bounds; NONREGULAR GRAPHS; LARGEST EIGENVALUE; BOUNDS;
D O I
10.1007/s10587-010-0052-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Laplacian spectral radius of a graph is the largest eigenvalue of the ass ociated Laplacian matrix. In this paper, we improve Shi's upper bound for the Laplacian spectral radius of irregular graphs and present some new bounds for the Laplacian spectral radius of some classes of graphs.
引用
收藏
页码:835 / 847
页数:13
相关论文
共 50 条
  • [41] Lower Bounds on the(Laplacian) Spectral Radius of Weighted Graphs
    Aimei YU
    Mei LU
    ChineseAnnalsofMathematics(SeriesB), 2014, 35 (04) : 669 - 678
  • [42] Proof of a conjecture on the distance Laplacian spectral radius of graphs
    Xue, Jie
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 540 : 84 - 94
  • [43] Lower Bounds on the (Laplacian) Spectral Radius of Weighted Graphs
    Yu, Aimei
    Lu, Mei
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (04) : 669 - 678
  • [44] CHROMATIC NUMBER AND SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Oboudi, Mohammad Reza
    TRANSACTIONS ON COMBINATORICS, 2022, 11 (04) : 327 - 334
  • [45] A note on the upper bounds for the Laplacian spectral radius of graphs
    Guo, Ji-Ming
    Li, Jianxi
    Shiu, Wai Chee
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (06) : 1657 - 1661
  • [46] ON THE HARMONIC INDEX AND THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Deng, Hanyuan
    Vetrik, Tomas
    Balachandran, Selvaraj
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (02): : 299 - 307
  • [47] Sharp Upper Bounds for the Laplacian Spectral Radius of Graphs
    Zhou, Houqing
    Xu, Youzhuan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [48] The signless Laplacian spectral radius of graphs with given diameter
    Feng LiHua
    Yu GuiHai
    UTILITAS MATHEMATICA, 2010, 83 : 265 - 276
  • [49] ON THE DISTANCE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS AND DIGRAPHS
    Li, Dan
    Wang, Guoping
    Meng, Jixiang
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2017, 32 : 438 - 446
  • [50] On the maximum signless Laplacian spectral radius of bipartite graphs
    Niu, Aihong
    Fan, Dandan
    Wang, Guoping
    ARS COMBINATORIA, 2018, 140 : 389 - 395