Spectral radius conditions for fractional [a, b]-covered graphs

被引:2
|
作者
Wang, Junjie [1 ]
Zheng, Jiaxin [1 ]
Chen, Yonglei [2 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
[2] Lanzhou Jiaotong Univ, Inst Appl Math, Lanzhou 730070, Peoples R China
关键词
Spectral radius; Fractional[ab]-factor; Fractional[ab]-covered graph; SIGNLESS LAPLACIAN; SUFFICIENT CONDITION; EVEN;
D O I
10.1016/j.laa.2023.02.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is called fractional [a, b]-covered if for every edge e of G there is a fractional [a, b]-factor with the indicator function h such that h(e) = 1. In this paper, we provide a tight spectral radius condition for graphs being fractional [a, b]-covered. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] Fractional matching, factors and spectral radius in graphs involving minimum degree
    Lou, Jing
    Liu, Ruifang
    Ao, Guoyan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 677 : 337 - 351
  • [32] Toughness for Fractional (2, b, k)-Critical Covered Graphs
    Su-Fang Wang
    Wei Zhang
    Journal of the Operations Research Society of China, 2023, 11 : 197 - 205
  • [33] Binding numbers for fractional (a, b, k)-critical covered graphs
    Zhou, Sizhong
    Liu, Hongxia
    Xu, Yang
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2020, 21 (02): : 115 - 121
  • [34] Toughness for Fractional (2, b, k)-Critical Covered Graphs
    Wang, Su-Fang
    Zhang, Wei
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (01) : 197 - 205
  • [35] Degree conditions for graphs to be fractional (a, b, n)-critical graphs
    Li J.
    Ma Y.
    Journal of Systems Science and Complexity, 2006, 19 (4) : 491 - 497
  • [36] DEGREE CONDITIONS FOR GRAPHS TO BE FRACTIONAL(a,b,n)-CRITICAL GRAPHS
    Jianxiang LI Department of Mathematics.Hunan University of Science and Technology
    Journal of Systems Science & Complexity, 2006, (04) : 491 - 497
  • [37] Sufficient conditions for fractional [a, b]-deleted graphs
    Zhou, Sizhong
    Zhang, Yuli
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [38] On the spectral radius of unicyclic graphs
    Yu, AM
    Tian, F
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2004, (51) : 97 - 109
  • [39] Spectral radius and Hamiltonicity of graphs
    Fiedler, Miroslav
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2170 - 2173
  • [40] Cleavages of graphs: the spectral radius
    de la Pena, Jose A.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (07): : 641 - 649