Robust quantitative susceptibility mapping via approximate message passing with parameter estimation

被引:2
|
作者
Huang, Shuai [1 ]
Lah, James J. [2 ]
Allen, Jason W. [1 ,2 ]
Qiu, Deqiang [1 ]
机构
[1] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA USA
[2] Emory Univ, Dept Neurol, Atlanta, GA USA
基金
美国国家卫生研究院;
关键词
approximate message passing; compressive sensing; outlier modeling; parameter estimation; quantitative susceptibility mapping; MAGNETIC-FIELD; BRAIN IRON; QSM; INVERSION; MAGNITUDE; PHASE;
D O I
10.1002/mrm.29722
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: For quantitative susceptibility mapping (QSM), the lack of ground-truth in clinical settings makes it challenging to determine suitable parameters for the dipole inversion. We propose a probabilistic Bayesian approach for QSM with built-in parameter estimation, and incorporate the nonlinear formulation of the dipole inversion to achieve a robust recovery of the susceptibility maps. Theory: Froma Bayesian perspective, the imagewavelet coefficients are approximately sparse andmodeled by the Laplace distribution. The measurement noise is modeled by a Gaussian-mixture distribution with two components, where the second component is used to model the noise outliers. Through probabilistic inference, the susceptibility map and distribution parameters can be jointly recovered using approximate message passing (AMP). Methods: We compare our proposed AMP with built-in parameter estimation (AMP-PE) to the state-of-the-art L1-QSM, FANSI, andMEDI approaches on the simulated and in vivo datasets, and perform experiments to explore the optimal settings of AMP-PE. Reproducible code is available at: https://github.com/ EmoryCN2L/QSM_AMP_PE. Results: On the simulated Sim2Snr1 dataset, AMP-PE achieved the lowest NRMSE, deviation from calcification moment and the highest SSIM, while MEDI achieved the lowest high-frequency error norm. On the in vivo datasets, AMP-PE is robust and successfully recovers the susceptibility maps using the estimated parameters, whereas L1-QSM, FANSI and MEDI typically require additional visual fine-tuning to select or double-check working parameters. Conclusion: AMP-PE provides automatic and adaptive parameter estimation for QSM and avoids the subjectivity from the visual fine-tuning step, making it an excellent choice for the clinical setting.
引用
收藏
页码:1414 / 1430
页数:17
相关论文
共 50 条
  • [1] COMPRESSIVE PARAMETER ESTIMATION VIA APPROXIMATE MESSAGE PASSING
    Hamzehei, Shermin
    Duarte, Marco F.
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3327 - 3331
  • [2] CONSISTENT PARAMETER ESTIMATION FOR LASSO AND APPROXIMATE MESSAGE PASSING
    Mousavi, Ali
    Maleki, Arian
    Baraniuk, Richard G.
    ANNALS OF STATISTICS, 2018, 46 (01): : 119 - 148
  • [3] CONSISTENT PARAMETER ESTIMATION FOR LASSO AND APPROXIMATE MESSAGE PASSING
    Mousavi, Ali
    Maleki, Arian
    Baraniuk, Richard G.
    ANNALS OF STATISTICS, 2017, 45 (06): : 2427 - 2454
  • [4] Approximate Message Passing With Parameter Estimation for Heavily Quantized Measurements
    Huang, Shuai
    Qiu, Deqiang
    Tran, Trac D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 2062 - 2077
  • [5] High dimensional robust M-estimation: asymptotic variance via approximate message passing
    Donoho, David
    Montanari, Andrea
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (3-4) : 935 - 969
  • [6] High dimensional robust M-estimation: asymptotic variance via approximate message passing
    David Donoho
    Andrea Montanari
    Probability Theory and Related Fields, 2016, 166 : 935 - 969
  • [7] Approximate Message Passing With Consistent Parameter Estimation and Applications to Sparse Learning
    Kamilov, Ulugbek S.
    Rangan, Sundeep
    Fletcher, Alyson K.
    Unser, Michael
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (05) : 2969 - 2985
  • [8] Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing
    Bu, Zhiqi
    Klusowski, Jason M.
    Rush, Cynthia
    Su, Weijie
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] mmWave Channel Estimation via Approximate Message Passing with Side Information
    Baron, Dror
    Rush, Cynthia
    Yapici, Yavuz
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020), 2020,
  • [10] Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing
    Bu, Zhiqi
    Klusowski, Jason M.
    Rush, Cynthia
    Su, Weijie J.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (01) : 506 - 537