Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review

被引:63
|
作者
Prelaj, A. [1 ,2 ,3 ,19 ]
Miskovic, V. [1 ,2 ]
Zanitti, M. [4 ]
Trovo, F.
Genova, C. [5 ,6 ]
Viscardi, G. [7 ]
Rebuzzi, S. E. [6 ,8 ]
Mazzeo, L. [1 ,2 ]
Provenzano, L. [1 ]
Kosta, S.
Favali, M. [2 ]
Spagnoletti, A. [1 ]
Castelo-Branco, L. [9 ,10 ]
Dolezal, J. [11 ]
Pearson, A. T. [11 ]
Lo Russo, G.
Proto, C. [1 ]
Ganzinelli, M. [1 ]
Giani, C. [1 ]
Ambrosini, E.
Turajlic, S. [12 ]
Koopman, M. [3 ,16 ]
Au, L. [13 ,14 ,15 ]
Delaloge, S. [3 ,17 ]
Kather, J. N. [18 ]
de Braud, F. [1 ]
Garassino, M. C. [11 ]
Pentheroudakis, G.
Spencert, C. [20 ]
Pedrocchit, A. L. G. [2 ]
机构
[1] Fdn IRCCS Ist Nazl Tumori, Med Oncol Dept, Milan, Italy
[2] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
[3] ESMO, Real World Data & Digital Hlth Working Grp, Lugano, Switzerland
[4] Aalborg Univ, Dept Elect Syst, Copenhagen, Denmark
[5] IRCCS Osped Policlin San Martino, UO Clin Oncol Med, Genoa, Italy
[6] Univ Genoa, Dept Internal Md & Med Specialties Di M I, Genoa, Italy
[7] Univ Campania Luigi Vanvitelli, Precis Med Dept, Naples, Italy
[8] Med Oncol Unit Osped San Paolo, Savona, Italy
[9] ESMO European Soc Med Oncol, Lugano, Switzerland
[10] NOVA Natl Sch Publ Hlth, Lisbon, Portugal
[11] Univ Chicago, Dept Med, Sect Hematol Oncol, Chicago, IL USA
[12] Francis Crick Inst, Canc Dynam Lab, London, England
[13] Royal Marsden NHS Fdn Trust, Renal & Skin Unit, London, England
[14] Peter Maallum Canc Ctr, Dept Med Oncol, Melbourne, Derbyshire, Australia
[15] Univ Melbourne, Sir Peter MacCallum Dept Med Oncol, Melbourne, Australia
[16] Netherlands Comprehens Canc Org, Dept Res & Dev, Utrecht, Netherlands
[17] Dept Canc Med, Gustave Roussy, Villejuif, France
[18] Tech Univ Dresden, Med Fac Carl Gustav Carus, Else Kroener Fresenius Ctr Digital Hlth, Dresden, Germany
[19] Fdn IRCCS Ist Nazl Tumori, Med Oncol Dept 1, 1 Via Giacomo Venezian, I-20133 Milan, Italy
[20] Francis Crick Inst, Canc Dynam Lab, 1 Midland Rd, London NW1 1AT, England
关键词
Key words: immunotherapy; arti fi cial intelligence; multiomics; real; -world; multimodal; CELL LUNG-CANCER; CHECKPOINT INHIBITORS; ANTI-PD-1; THERAPY; FINAL ANALYSIS; OPEN-LABEL; IMMUNOTHERAPY; PEMBROLIZUMAB; NIVOLUMAB; OUTCOMES; CHEMOTHERAPY;
D O I
10.1016/j.annonc.2023.10.125
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: The widespread use of immune checkpoint inhibitors (ICIs) has revolutionised treatment of multiple cancer types. However, selecting patients who may benefit from ICI remains challenging. Artificial intelligence (AI) approaches allow exploitation of high -dimension oncological data in research and development of precision immuno-oncology. Materials and methods: We conducted a systematic literature review of peer -reviewed original articles studying the ICI efficacy prediction in cancer patients across five data modalities: genomics (including genomics, transcriptomics, and epigenomics), radiomics, digital pathology (pathomics), and real -world and multimodality data. Results: A total of 90 studies were included in this systematic review, with 80% published in 2021-2022. Among them, 37 studies included genomic, 20 radiomic, 8 pathomic, 20 real -world, and 5 multimodal data. Standard machine learning (ML) methods were used in 72% of studies, deep learning (DL) methods in 22%, and both in 6%. The most frequently studied cancer type was non -small -cell lung cancer (36%), followed by melanoma (16%), while 25% included pan -cancer studies. No prospective study design incorporated AI -based methodologies from the outset; rather, all implemented AI as a post hoc analysis. Novel biomarkers for ICI in radiomics and pathomics were identified using AI approaches, and molecular biomarkers have expanded past genomics into transcriptomics and epigenomics. Finally, complex algorithms and new types of AI -based markers, such as meta-biomarkers, are emerging by integrating multimodal/multi-omics data. Conclusion: AI -based methods have expanded the horizon for biomarker discovery, demonstrating the power of integrating multimodal data from existing datasets to discover new meta-biomarkers. While most of the included studies showed promise for AI -based prediction of benefit from immunotherapy, none provided high-level evidence for immediate practice change. A priori planned prospective trial designs are needed to cover all lifecycle steps of these software biomarkers, from development and validation to integration into clinical practice.
引用
收藏
页码:29 / 65
页数:37
相关论文
共 50 条
  • [41] Organotypic tumor slice cultures provide a versatile platform for immuno-oncology and drug discovery
    Sivakumar, Ramya
    Chan, Marina
    Shin, Jiye Stella
    Nishida-Aoki, Nao
    Kenerson, Heidi L.
    Elemento, Olivier
    Beltran, Himisha
    Yeung, Raymond
    Gujral, Taranjit S.
    ONCOIMMUNOLOGY, 2019, 8 (12):
  • [42] Implementation of artificial intelligence approaches in oncology clinical trials: A systematic review
    Saady, Marwa
    Eissa, Mahmoud
    Yacoub, Ahmed S.
    Hamed, Ahmed B.
    Azzazy, Hassan Mohamed El-Said
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2025, 161
  • [43] Persisting challenges in the development of predictive biomarkers for immuno-oncology therapies for renal cell carcinoma
    Kato, Renpei
    Obara, Wataru
    EXPERT REVIEW OF ANTICANCER THERAPY, 2025, 25 (02) : 97 - 103
  • [44] A new approach for immuno-oncology biomarker discovery: High-plex, spatial protein profiling based on NanoString digital quantification.
    Lee, David
    Liang, Yan
    Merritt, Chris
    Pakiam, Fiona
    Ong, Giang
    Weng, Shaobu
    Dunaway, Dwayne
    Jung, Jaemyeong
    Warren, Sarah
    Crowder, Scott
    Beechem, Joseph M.
    Winckler, Wendy
    JOURNAL OF CLINICAL ONCOLOGY, 2017, 35 (07)
  • [45] A first-in-class, non-invasive, immunodynamic biomarker approach for precision immuno-oncology
    Sprooten, Jenny
    Coosemans, An
    Garg, Abhishek D.
    ONCOIMMUNOLOGY, 2022, 11 (01):
  • [46] The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group
    Khalid El Bairi
    Harry R. Haynes
    Elizabeth Blackley
    Susan Fineberg
    Jeffrey Shear
    Sophia Turner
    Juliana Ribeiro de Freitas
    Daniel Sur
    Luis Claudio Amendola
    Masoumeh Gharib
    Amine Kallala
    Indu Arun
    Farid Azmoudeh-Ardalan
    Luciana Fujimoto
    Luz F. Sua
    Shi-Wei Liu
    Huang-Chun Lien
    Pawan Kirtani
    Marcelo Balancin
    Hicham El Attar
    Prerna Guleria
    Wenxian Yang
    Emad Shash
    I-Chun Chen
    Veronica Bautista
    Jose Fernando Do Prado Moura
    Bernardo L. Rapoport
    Carlos Castaneda
    Eunice Spengler
    Gabriela Acosta-Haab
    Isabel Frahm
    Joselyn Sanchez
    Miluska Castillo
    Najat Bouchmaa
    Reena R. Md Zin
    Ruohong Shui
    Timothy Onyuma
    Wentao Yang
    Zaheed Husain
    Karen Willard-Gallo
    An Coosemans
    Edith A. Perez
    Elena Provenzano
    Paula Gonzalez Ericsson
    Eduardo Richardet
    Ravi Mehrotra
    Sandra Sarancone
    Anna Ehinger
    David L. Rimm
    John M. S. Bartlett
    npj Breast Cancer, 7
  • [47] The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group
    El Bairi, Khalid
    Haynes, Harry R.
    Blackley, Elizabeth
    Fineberg, Susan
    Shear, Jeffrey
    Turner, Sophia
    de Freitas, Juliana Ribeiro
    Sur, Daniel
    Amendola, Luis Claudio
    Gharib, Masoumeh
    Kallala, Amine
    Arun, Indu
    Azmoudeh-Ardalan, Farid
    Fujimoto, Luciana
    Sua, Luz F.
    Liu, Shi-Wei
    Lien, Huang-Chun
    Kirtani, Pawan
    Balancin, Marcelo
    El Attar, Hicham
    Guleria, Prerna
    Yang, Wenxian
    Shash, Emad
    Chen, I-Chun
    Bautista, Veronica
    Do Prado Moura, Jose Fernando
    Rapoport, Bernardo L.
    Castaneda, Carlos
    Spengler, Eunice
    Acosta-Haab, Gabriela
    Frahm, Isabel
    Sanchez, Joselyn
    Castillo, Miluska
    Bouchmaa, Najat
    Zin, Reena R. Md
    Shui, Ruohong
    Onyuma, Timothy
    Yang, Wentao
    Husain, Zaheed
    Willard-Gallo, Karen
    Coosemans, An
    Perez, Edith A.
    Provenzano, Elena
    Ericsson, Paula Gonzalez
    Richardet, Eduardo
    Mehrotra, Ravi
    Sarancone, Sandra
    Ehinger, Anna
    Rimm, David L.
    Bartlett, John M. S.
    NPJ BREAST CANCER, 2021, 7 (01)
  • [48] Immuno-Oncology biomarkers 2010 and beyond: Perspectives from the iSBTc/SITC biomarker task force
    Butterfield, Lisa H.
    Disis, Mary L.
    Khleif, Samir N.
    Balwit, James M.
    Marincola, Francesco M.
    JOURNAL OF TRANSLATIONAL MEDICINE, 2010, 8
  • [50] Biomarker monitoring by quantitative MALDI imaging; application to the tryptophan-kynurenine pathway in immuno-oncology
    Belkacem, Rima Ait
    Bol, Vanessa
    Hamm, Gregory
    Linehan, Stefan
    Gomes, Bruno
    Stauber, Jonathan
    CANCER RESEARCH, 2017, 77