Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review

被引:63
|
作者
Prelaj, A. [1 ,2 ,3 ,19 ]
Miskovic, V. [1 ,2 ]
Zanitti, M. [4 ]
Trovo, F.
Genova, C. [5 ,6 ]
Viscardi, G. [7 ]
Rebuzzi, S. E. [6 ,8 ]
Mazzeo, L. [1 ,2 ]
Provenzano, L. [1 ]
Kosta, S.
Favali, M. [2 ]
Spagnoletti, A. [1 ]
Castelo-Branco, L. [9 ,10 ]
Dolezal, J. [11 ]
Pearson, A. T. [11 ]
Lo Russo, G.
Proto, C. [1 ]
Ganzinelli, M. [1 ]
Giani, C. [1 ]
Ambrosini, E.
Turajlic, S. [12 ]
Koopman, M. [3 ,16 ]
Au, L. [13 ,14 ,15 ]
Delaloge, S. [3 ,17 ]
Kather, J. N. [18 ]
de Braud, F. [1 ]
Garassino, M. C. [11 ]
Pentheroudakis, G.
Spencert, C. [20 ]
Pedrocchit, A. L. G. [2 ]
机构
[1] Fdn IRCCS Ist Nazl Tumori, Med Oncol Dept, Milan, Italy
[2] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
[3] ESMO, Real World Data & Digital Hlth Working Grp, Lugano, Switzerland
[4] Aalborg Univ, Dept Elect Syst, Copenhagen, Denmark
[5] IRCCS Osped Policlin San Martino, UO Clin Oncol Med, Genoa, Italy
[6] Univ Genoa, Dept Internal Md & Med Specialties Di M I, Genoa, Italy
[7] Univ Campania Luigi Vanvitelli, Precis Med Dept, Naples, Italy
[8] Med Oncol Unit Osped San Paolo, Savona, Italy
[9] ESMO European Soc Med Oncol, Lugano, Switzerland
[10] NOVA Natl Sch Publ Hlth, Lisbon, Portugal
[11] Univ Chicago, Dept Med, Sect Hematol Oncol, Chicago, IL USA
[12] Francis Crick Inst, Canc Dynam Lab, London, England
[13] Royal Marsden NHS Fdn Trust, Renal & Skin Unit, London, England
[14] Peter Maallum Canc Ctr, Dept Med Oncol, Melbourne, Derbyshire, Australia
[15] Univ Melbourne, Sir Peter MacCallum Dept Med Oncol, Melbourne, Australia
[16] Netherlands Comprehens Canc Org, Dept Res & Dev, Utrecht, Netherlands
[17] Dept Canc Med, Gustave Roussy, Villejuif, France
[18] Tech Univ Dresden, Med Fac Carl Gustav Carus, Else Kroener Fresenius Ctr Digital Hlth, Dresden, Germany
[19] Fdn IRCCS Ist Nazl Tumori, Med Oncol Dept 1, 1 Via Giacomo Venezian, I-20133 Milan, Italy
[20] Francis Crick Inst, Canc Dynam Lab, 1 Midland Rd, London NW1 1AT, England
关键词
Key words: immunotherapy; arti fi cial intelligence; multiomics; real; -world; multimodal; CELL LUNG-CANCER; CHECKPOINT INHIBITORS; ANTI-PD-1; THERAPY; FINAL ANALYSIS; OPEN-LABEL; IMMUNOTHERAPY; PEMBROLIZUMAB; NIVOLUMAB; OUTCOMES; CHEMOTHERAPY;
D O I
10.1016/j.annonc.2023.10.125
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: The widespread use of immune checkpoint inhibitors (ICIs) has revolutionised treatment of multiple cancer types. However, selecting patients who may benefit from ICI remains challenging. Artificial intelligence (AI) approaches allow exploitation of high -dimension oncological data in research and development of precision immuno-oncology. Materials and methods: We conducted a systematic literature review of peer -reviewed original articles studying the ICI efficacy prediction in cancer patients across five data modalities: genomics (including genomics, transcriptomics, and epigenomics), radiomics, digital pathology (pathomics), and real -world and multimodality data. Results: A total of 90 studies were included in this systematic review, with 80% published in 2021-2022. Among them, 37 studies included genomic, 20 radiomic, 8 pathomic, 20 real -world, and 5 multimodal data. Standard machine learning (ML) methods were used in 72% of studies, deep learning (DL) methods in 22%, and both in 6%. The most frequently studied cancer type was non -small -cell lung cancer (36%), followed by melanoma (16%), while 25% included pan -cancer studies. No prospective study design incorporated AI -based methodologies from the outset; rather, all implemented AI as a post hoc analysis. Novel biomarkers for ICI in radiomics and pathomics were identified using AI approaches, and molecular biomarkers have expanded past genomics into transcriptomics and epigenomics. Finally, complex algorithms and new types of AI -based markers, such as meta-biomarkers, are emerging by integrating multimodal/multi-omics data. Conclusion: AI -based methods have expanded the horizon for biomarker discovery, demonstrating the power of integrating multimodal data from existing datasets to discover new meta-biomarkers. While most of the included studies showed promise for AI -based prediction of benefit from immunotherapy, none provided high-level evidence for immediate practice change. A priori planned prospective trial designs are needed to cover all lifecycle steps of these software biomarkers, from development and validation to integration into clinical practice.
引用
收藏
页码:29 / 65
页数:37
相关论文
共 50 条
  • [21] A novel framework for evaluating biomarker response relationships in immuno-oncology (IO)
    Evelhoch, J. L.
    Mogg, R.
    Cristescu, R.
    Aurora-Garg, D.
    Chow, L. Q.
    Loi, S.
    Catenacci, D. V. T.
    Matulonis, U. A.
    Ott, P. A.
    Antonarakis, E. S.
    Poehlein, C. H.
    Joe, A.
    Keefe, S. M.
    Kang, P.
    Karantza, V.
    Cheng, J.
    Rubin, E. H.
    ANNALS OF ONCOLOGY, 2018, 29 : 31 - 31
  • [22] Artificial intelligence applied to musculoskeletal oncology: a systematic review
    Li, Matthew D.
    Ahmed, Syed Rakin
    Choy, Edwin
    Lozano-Calderon, Santiago A.
    Kalpathy-Cramer, Jayashree
    Chang, Connie Y.
    SKELETAL RADIOLOGY, 2022, 51 (02) : 245 - 256
  • [23] Artificial intelligence applied to musculoskeletal oncology: a systematic review
    Matthew D. Li
    Syed Rakin Ahmed
    Edwin Choy
    Santiago A. Lozano-Calderon
    Jayashree Kalpathy-Cramer
    Connie Y. Chang
    Skeletal Radiology, 2022, 51 : 245 - 256
  • [24] Applications of Artificial Intelligence in Pediatric Oncology: A Systematic Review
    Ramesh, Siddhi
    Chokkara, Sukarn
    Shen, Timothy
    Major, Ajay
    Volchenboum, Samuel L.
    Mayampurath, Anoop
    Applebaum, Mark A.
    JCO CLINICAL CANCER INFORMATICS, 2021, 5 : 1208 - 1219
  • [25] Computational discovery and experimental validation of novel drug targets in immuno-oncology
    Machlenkin, Arthur
    Levy, Ofer
    Rotman, Galit
    CANCER IMMUNOLOGY RESEARCH, 2016, 4 (01)
  • [26] Artificial Intelligence and Predictive Modeling in Spinal Oncology: A Narrative Review
    Kuijten, Rene Harmen
    Zijlstra, Hester
    Groot, Olivier Quinten
    Schwab, Joseph Hasbrouck
    INTERNATIONAL JOURNAL OF SPINE SURGERY, 2023, 17 : S45 - S56
  • [27] The evolving landscape of predictive biomarkers in immuno-oncology with a focus on spatial technologies
    Sadeghi Rad, Habib
    Bazaz, Sajad Razavi
    Monkman, James
    Ebrahimi Warkiani, Majid
    Rezaei, Nima
    O'Byrne, Ken
    Kulasinghe, Arutha
    CLINICAL & TRANSLATIONAL IMMUNOLOGY, 2020, 9 (11)
  • [28] Immuno-oncology therapy in metastatic bladder cancer: A systematic review and network meta-analysis
    Chierigo, Francesco
    Wenzel, Mike
    Wuernschimmel, Christoph
    Flammia, Rocco Simone
    Horlemann, Benedikt
    Tian, Zhe
    Saad, Fred
    Chun, Felix K. H.
    Tilki, Derya
    Shariat, Shahrokh F.
    Gallucci, Michele
    Borghesi, Marco
    Suardi, Nazareno
    Terrone, Carlo
    Karakiewicz, Pierre, I
    CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2022, 169
  • [29] Artificial intelligence for proteomics and biomarker discovery
    Mann, Matthias
    Kumar, Chanchal
    Zeng, Wen-Feng
    Strauss, Maximilian T.
    CELL SYSTEMS, 2021, 12 (08) : 759 - 770
  • [30] Immuno-oncology Combinations: A Review of Clinical Experience and Future Prospects
    Antonia, Scott J.
    Larkin, James
    Ascierto, Paolo A.
    CLINICAL CANCER RESEARCH, 2014, 20 (24) : 6258 - 6268