Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review

被引:63
|
作者
Prelaj, A. [1 ,2 ,3 ,19 ]
Miskovic, V. [1 ,2 ]
Zanitti, M. [4 ]
Trovo, F.
Genova, C. [5 ,6 ]
Viscardi, G. [7 ]
Rebuzzi, S. E. [6 ,8 ]
Mazzeo, L. [1 ,2 ]
Provenzano, L. [1 ]
Kosta, S.
Favali, M. [2 ]
Spagnoletti, A. [1 ]
Castelo-Branco, L. [9 ,10 ]
Dolezal, J. [11 ]
Pearson, A. T. [11 ]
Lo Russo, G.
Proto, C. [1 ]
Ganzinelli, M. [1 ]
Giani, C. [1 ]
Ambrosini, E.
Turajlic, S. [12 ]
Koopman, M. [3 ,16 ]
Au, L. [13 ,14 ,15 ]
Delaloge, S. [3 ,17 ]
Kather, J. N. [18 ]
de Braud, F. [1 ]
Garassino, M. C. [11 ]
Pentheroudakis, G.
Spencert, C. [20 ]
Pedrocchit, A. L. G. [2 ]
机构
[1] Fdn IRCCS Ist Nazl Tumori, Med Oncol Dept, Milan, Italy
[2] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
[3] ESMO, Real World Data & Digital Hlth Working Grp, Lugano, Switzerland
[4] Aalborg Univ, Dept Elect Syst, Copenhagen, Denmark
[5] IRCCS Osped Policlin San Martino, UO Clin Oncol Med, Genoa, Italy
[6] Univ Genoa, Dept Internal Md & Med Specialties Di M I, Genoa, Italy
[7] Univ Campania Luigi Vanvitelli, Precis Med Dept, Naples, Italy
[8] Med Oncol Unit Osped San Paolo, Savona, Italy
[9] ESMO European Soc Med Oncol, Lugano, Switzerland
[10] NOVA Natl Sch Publ Hlth, Lisbon, Portugal
[11] Univ Chicago, Dept Med, Sect Hematol Oncol, Chicago, IL USA
[12] Francis Crick Inst, Canc Dynam Lab, London, England
[13] Royal Marsden NHS Fdn Trust, Renal & Skin Unit, London, England
[14] Peter Maallum Canc Ctr, Dept Med Oncol, Melbourne, Derbyshire, Australia
[15] Univ Melbourne, Sir Peter MacCallum Dept Med Oncol, Melbourne, Australia
[16] Netherlands Comprehens Canc Org, Dept Res & Dev, Utrecht, Netherlands
[17] Dept Canc Med, Gustave Roussy, Villejuif, France
[18] Tech Univ Dresden, Med Fac Carl Gustav Carus, Else Kroener Fresenius Ctr Digital Hlth, Dresden, Germany
[19] Fdn IRCCS Ist Nazl Tumori, Med Oncol Dept 1, 1 Via Giacomo Venezian, I-20133 Milan, Italy
[20] Francis Crick Inst, Canc Dynam Lab, 1 Midland Rd, London NW1 1AT, England
关键词
Key words: immunotherapy; arti fi cial intelligence; multiomics; real; -world; multimodal; CELL LUNG-CANCER; CHECKPOINT INHIBITORS; ANTI-PD-1; THERAPY; FINAL ANALYSIS; OPEN-LABEL; IMMUNOTHERAPY; PEMBROLIZUMAB; NIVOLUMAB; OUTCOMES; CHEMOTHERAPY;
D O I
10.1016/j.annonc.2023.10.125
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: The widespread use of immune checkpoint inhibitors (ICIs) has revolutionised treatment of multiple cancer types. However, selecting patients who may benefit from ICI remains challenging. Artificial intelligence (AI) approaches allow exploitation of high -dimension oncological data in research and development of precision immuno-oncology. Materials and methods: We conducted a systematic literature review of peer -reviewed original articles studying the ICI efficacy prediction in cancer patients across five data modalities: genomics (including genomics, transcriptomics, and epigenomics), radiomics, digital pathology (pathomics), and real -world and multimodality data. Results: A total of 90 studies were included in this systematic review, with 80% published in 2021-2022. Among them, 37 studies included genomic, 20 radiomic, 8 pathomic, 20 real -world, and 5 multimodal data. Standard machine learning (ML) methods were used in 72% of studies, deep learning (DL) methods in 22%, and both in 6%. The most frequently studied cancer type was non -small -cell lung cancer (36%), followed by melanoma (16%), while 25% included pan -cancer studies. No prospective study design incorporated AI -based methodologies from the outset; rather, all implemented AI as a post hoc analysis. Novel biomarkers for ICI in radiomics and pathomics were identified using AI approaches, and molecular biomarkers have expanded past genomics into transcriptomics and epigenomics. Finally, complex algorithms and new types of AI -based markers, such as meta-biomarkers, are emerging by integrating multimodal/multi-omics data. Conclusion: AI -based methods have expanded the horizon for biomarker discovery, demonstrating the power of integrating multimodal data from existing datasets to discover new meta-biomarkers. While most of the included studies showed promise for AI -based prediction of benefit from immunotherapy, none provided high-level evidence for immediate practice change. A priori planned prospective trial designs are needed to cover all lifecycle steps of these software biomarkers, from development and validation to integration into clinical practice.
引用
收藏
页码:29 / 65
页数:37
相关论文
共 50 条
  • [31] Biomarker Technologies to Support Early Clinical Immuno-oncology Development: Advances and Interpretation
    Cannarile, Michael A.
    Gomes, Bruno
    Canamero, Marta
    Reis, Bernhard
    Byrd, Allyson
    Charo, Jehad
    Yadav, Mahesh
    Karanikas, Vaios
    CLINICAL CANCER RESEARCH, 2021, 27 (15) : 4147 - 4159
  • [32] Empowering pathologists to lead immuno-oncology (10) biomarker testing in the community.
    Kim, Joseph
    Kelly, Melissa
    Beumer, Kellie
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (28) : 348 - 348
  • [33] Artificial intelligence for decision support in surgical oncology - a systematic review
    Wagner, Martin
    Schulze, Andre
    Haselbeck-Kobler, Michael
    Probst, Pascal
    Brandenburg, Johanna M.
    Kalkum, Eva
    Majlesara, Ali
    Ramouz, Ali
    Klotz, Rosa
    Nickel, Felix
    Marz, Keno
    Bodenstedt, Sebastian
    Dugas, Martin
    Maier-Hein, Lena
    Mehrabi, Arianeb
    Speidel, Stefanie
    Buchler, Markus W.
    Mueller-Stich, Beat Peter
    ARTIFICIAL INTELLIGENCE SURGERY, 2022, 2 (03): : 159 - 172
  • [34] Development of a bioluminescent pancreatic orthotopic KPC model for immuno-oncology drug discovery
    Song, Yanrui
    Wang, Phillip Shuzong
    Yin, Yinfei
    Li, Henry Q. X.
    Ouyang, Davy Xuesong
    CANCER RESEARCH, 2020, 80 (16)
  • [35] Discovery of 4-Azaindole Inhibitors of TGFβRI as Immuno-oncology Agents
    Zhang, Yong
    Zhao, Yufen
    Tebben, Andrew J.
    Sheriff, Steven
    Ruzanov, Max
    Fereshteh, Mark P.
    Fan, Yi
    Lippy, Jonathan
    Swanson, Jesse
    Ho, Ching-Ping
    Wautlet, Barri S.
    Rose, Anne
    Parrish, Karen
    Yang, Zheng
    Donnell, Andrew F.
    Zhang, Liping
    Fink, Brian E.
    Vite, Gregory D.
    Augustine-Rauch, Karen
    Fargnoli, Joseph
    Borzilleri, Robert M.
    ACS MEDICINAL CHEMISTRY LETTERS, 2018, 9 (11): : 1117 - 1122
  • [36] Development of a multiplex immuno-oncology biomarker and digital pathology workflow for assessment of urothelial carcinoma
    Xie, Youheng
    Olkhov-Mitsel, Ekaterina
    Alminawi, Samira
    Slodkowska, Elzbieta
    Downes, Michelle R.
    PATHOLOGY RESEARCH AND PRACTICE, 2021, 226
  • [37] A review of spatial profiling technologies for characterizing the tumor microenvironment in immuno-oncology
    Hu, Bian
    Sajid, Muhammad
    Lv, Rong
    Liu, Lianxin
    Sun, Cheng
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [38] Quantitative modeling as a systematic approach for drug combination evaluation in immuno-oncology (IO)
    Helmlinger, Gabriel
    Kosinsky, Yuri
    Chu, Lulu
    Peskov, Kirill
    Voronova, Veronika
    Borodovsky, Alexandra
    Woessner, Richard
    Sachsenmeier, Kris
    Al-huniti, Nidal
    CANCER RESEARCH, 2018, 78 (13)
  • [39] Role of artificial intelligence applied to ultrasound in gynecology oncology: A systematic review
    Moro, Francesca
    Ciancia, Marianna
    Zace, Drieda
    Vagni, Marica
    Tran, Huong Elena
    Giudice, Maria Teresa
    Zoccoli, Sofia Gambigliani
    Mascilini, Floriana
    Ciccarone, Francesca
    Boldrini, Luca
    D'Antonio, Francesco
    Scambia, Giovanni
    Testa, Antonia Carla
    INTERNATIONAL JOURNAL OF CANCER, 2024, 155 (10) : 1832 - 1845
  • [40] Developmentof a murine tumor immunophenotyping platform to support drug discovery anddevelopment in immuno-oncology
    Belmontes, Brian
    Matyas, Stephanie
    O'Brien, Sarah
    Tan, Hong
    Ganley, Kenneth
    Merriam, Kimberly
    Rottman, Jim
    Egen, Jackson
    Beltran, Pedro
    Moody, Gordon
    CANCER RESEARCH, 2016, 76