Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review

被引:63
|
作者
Prelaj, A. [1 ,2 ,3 ,19 ]
Miskovic, V. [1 ,2 ]
Zanitti, M. [4 ]
Trovo, F.
Genova, C. [5 ,6 ]
Viscardi, G. [7 ]
Rebuzzi, S. E. [6 ,8 ]
Mazzeo, L. [1 ,2 ]
Provenzano, L. [1 ]
Kosta, S.
Favali, M. [2 ]
Spagnoletti, A. [1 ]
Castelo-Branco, L. [9 ,10 ]
Dolezal, J. [11 ]
Pearson, A. T. [11 ]
Lo Russo, G.
Proto, C. [1 ]
Ganzinelli, M. [1 ]
Giani, C. [1 ]
Ambrosini, E.
Turajlic, S. [12 ]
Koopman, M. [3 ,16 ]
Au, L. [13 ,14 ,15 ]
Delaloge, S. [3 ,17 ]
Kather, J. N. [18 ]
de Braud, F. [1 ]
Garassino, M. C. [11 ]
Pentheroudakis, G.
Spencert, C. [20 ]
Pedrocchit, A. L. G. [2 ]
机构
[1] Fdn IRCCS Ist Nazl Tumori, Med Oncol Dept, Milan, Italy
[2] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
[3] ESMO, Real World Data & Digital Hlth Working Grp, Lugano, Switzerland
[4] Aalborg Univ, Dept Elect Syst, Copenhagen, Denmark
[5] IRCCS Osped Policlin San Martino, UO Clin Oncol Med, Genoa, Italy
[6] Univ Genoa, Dept Internal Md & Med Specialties Di M I, Genoa, Italy
[7] Univ Campania Luigi Vanvitelli, Precis Med Dept, Naples, Italy
[8] Med Oncol Unit Osped San Paolo, Savona, Italy
[9] ESMO European Soc Med Oncol, Lugano, Switzerland
[10] NOVA Natl Sch Publ Hlth, Lisbon, Portugal
[11] Univ Chicago, Dept Med, Sect Hematol Oncol, Chicago, IL USA
[12] Francis Crick Inst, Canc Dynam Lab, London, England
[13] Royal Marsden NHS Fdn Trust, Renal & Skin Unit, London, England
[14] Peter Maallum Canc Ctr, Dept Med Oncol, Melbourne, Derbyshire, Australia
[15] Univ Melbourne, Sir Peter MacCallum Dept Med Oncol, Melbourne, Australia
[16] Netherlands Comprehens Canc Org, Dept Res & Dev, Utrecht, Netherlands
[17] Dept Canc Med, Gustave Roussy, Villejuif, France
[18] Tech Univ Dresden, Med Fac Carl Gustav Carus, Else Kroener Fresenius Ctr Digital Hlth, Dresden, Germany
[19] Fdn IRCCS Ist Nazl Tumori, Med Oncol Dept 1, 1 Via Giacomo Venezian, I-20133 Milan, Italy
[20] Francis Crick Inst, Canc Dynam Lab, 1 Midland Rd, London NW1 1AT, England
关键词
Key words: immunotherapy; arti fi cial intelligence; multiomics; real; -world; multimodal; CELL LUNG-CANCER; CHECKPOINT INHIBITORS; ANTI-PD-1; THERAPY; FINAL ANALYSIS; OPEN-LABEL; IMMUNOTHERAPY; PEMBROLIZUMAB; NIVOLUMAB; OUTCOMES; CHEMOTHERAPY;
D O I
10.1016/j.annonc.2023.10.125
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: The widespread use of immune checkpoint inhibitors (ICIs) has revolutionised treatment of multiple cancer types. However, selecting patients who may benefit from ICI remains challenging. Artificial intelligence (AI) approaches allow exploitation of high -dimension oncological data in research and development of precision immuno-oncology. Materials and methods: We conducted a systematic literature review of peer -reviewed original articles studying the ICI efficacy prediction in cancer patients across five data modalities: genomics (including genomics, transcriptomics, and epigenomics), radiomics, digital pathology (pathomics), and real -world and multimodality data. Results: A total of 90 studies were included in this systematic review, with 80% published in 2021-2022. Among them, 37 studies included genomic, 20 radiomic, 8 pathomic, 20 real -world, and 5 multimodal data. Standard machine learning (ML) methods were used in 72% of studies, deep learning (DL) methods in 22%, and both in 6%. The most frequently studied cancer type was non -small -cell lung cancer (36%), followed by melanoma (16%), while 25% included pan -cancer studies. No prospective study design incorporated AI -based methodologies from the outset; rather, all implemented AI as a post hoc analysis. Novel biomarkers for ICI in radiomics and pathomics were identified using AI approaches, and molecular biomarkers have expanded past genomics into transcriptomics and epigenomics. Finally, complex algorithms and new types of AI -based markers, such as meta-biomarkers, are emerging by integrating multimodal/multi-omics data. Conclusion: AI -based methods have expanded the horizon for biomarker discovery, demonstrating the power of integrating multimodal data from existing datasets to discover new meta-biomarkers. While most of the included studies showed promise for AI -based prediction of benefit from immunotherapy, none provided high-level evidence for immediate practice change. A priori planned prospective trial designs are needed to cover all lifecycle steps of these software biomarkers, from development and validation to integration into clinical practice.
引用
收藏
页码:29 / 65
页数:37
相关论文
共 50 条
  • [1] Computational methods and biomarker discovery strategies for spatial proteomics: a review in immuno-oncology
    Mi, Haoyang
    Sivagnanam, Shamilene
    Ho, Won Jin
    Zhang, Shuming
    Bergman, Daniel
    Deshpande, Atul
    Baras, Alexander S.
    Jaffee, Elizabeth M.
    Coussens, Lisa M.
    Fertig, Elana J.
    Popel, Aleksander S.
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [2] Artificial Intelligence-based Radiomics in the Era of Immuno-Oncology
    Kang, Cyra Y.
    Duarte, Samantha E.
    Kim, Hye Sung
    Kim, Eugene
    Park, Jonghanne
    Lee, Alice Daeun
    Kim, Yeseul
    Kim, Leeseul
    Cho, Sukjoo
    Oh, Yoojin
    Gim, Gahyun
    Park, Inae
    Lee, Dongyup
    Abazeed, Mohamed
    Velichko, Yury S.
    Chae, Young Kwang
    ONCOLOGIST, 2022, 27 (06): : E471 - E483
  • [3] Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology
    Sobhani, Faranak
    Robinson, Ruth
    Hamidinekoo, Azam
    Roxanis, Ioannis
    Somaiah, Navita
    Yuan, Yinyin
    BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2021, 1875 (02):
  • [4] Spatial UMAP and Image Cytometry for Topographic Immuno-oncology Biomarker Discovery
    Giraldo, Nicolas A.
    Berry, Sneha
    Becht, Etienne
    Ates, Deniz
    Schenk, Kara M.
    Engle, Elizabeth L.
    Green, Benjamin
    Nguyen, Peter
    Soni, Abha
    Stein, Julie E.
    Succaria, Farah
    Ogurtsova, Aleksandra
    Xu, Haiying
    Gottardo, Raphael
    Anders, Robert A.
    Lipson, Evan J.
    Danilova, Ludmila
    Baras, Alexander S.
    Taube, Janis M.
    CANCER IMMUNOLOGY RESEARCH, 2021, 9 (11) : 1262 - 1269
  • [5] Clinical Effects of Immuno-Oncology Therapy on Glioblastoma Patients: A Systematic Review
    Najafi, Masoumeh
    Jahanbakhshi, Amin
    Ghersi, Sebastiano Finocchi
    Giaccherini, Lucia
    Botti, Andrea
    Cavallieri, Francesco
    Rossi, Jessica
    Iori, Federico
    Iotti, Cinzia
    Ciammella, Patrizia
    Nabiuni, Mohsen
    Gomar, Marzieh
    Rezaie, Omid
    Cozzi, Salvatore
    BRAIN SCIENCES, 2023, 13 (02)
  • [6] Statistical considerations and challenges for immuno-oncology biomarker studies
    Li, Lin
    Close, Sandra L.
    Bromley, Christina M.
    Chen, Fang
    Gillis, Laura B.
    JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (15)
  • [7] Cell based assays for immuno-oncology discovery research
    Scrace, S.
    An, F.
    Ghirelli, C.
    Hoenderdos, K.
    Huseni, T.
    Laurent, T.
    Kifle, L.
    Kumar, S.
    Lowe, C.
    Myaskovsky, A.
    McCarthy, N.
    Moore, J.
    Pai, T.
    Steiger, J.
    Zhao, F.
    EUROPEAN JOURNAL OF CANCER, 2016, 69 : S104 - S104
  • [8] Chemoproteomic discovery of lipid kinase inhibitors for immuno-oncology
    Hsu, Ku-Lung
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [9] Humanized Mouse Models for Immuno-oncology Drug Discovery
    Kumari, Rajendra
    Feuer, Gerold
    Bourre, Ludovic
    CURRENT PROTOCOLS, 2023, 3 (08):
  • [10] Sensitivity Analysis in Economic Evaluations of Immuno-Oncology Drugs: A Systematic Literature Review
    Iliadou, Vasiliki
    Athanasakis, Kostas
    VALUE IN HEALTH REGIONAL ISSUES, 2023, 37 : 23 - 32