Morphotropic Phase Boundary in Polarized Organic Piezoelectric Materials

被引:5
|
作者
Gao, Fangfang [1 ,2 ]
Zhao, Xuan [1 ,2 ]
Xun, Xiaochen [1 ,2 ]
Huang, Houbing [3 ]
Shi, Xiaoming [3 ]
Li, Qi [1 ,2 ]
Liu, Fang [4 ,5 ]
Gao, Peng [4 ,5 ]
Liao, Qingliang [1 ,2 ]
Zhang, Yue [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Acad Adv Interdisciplinary Sci & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing Key Lab Adv Energy Mat & Technol, Beijing 100083, Peoples R China
[3] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[4] Peking Univ, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China
[5] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
VINYLIDENE FLUORIDE; BEHAVIOR;
D O I
10.1103/PhysRevLett.130.246801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Designing the morphotropic phase boundary (MPB) has been the most sought-after approach to achieve high piezoelectric performance of piezoelectric materials. However, MPB has not yet been found in the polarized organic piezoelectric materials. Here, we discover MPB with biphasic competition of & beta; and 3/1-helical phases in the polarized piezoelectric polymer alloys (PVTC-PVT) and demonstrate a mechanism to induce MPB using the compositionally tailored intermolecular interaction. Consequently, PVTC-PVT exhibits a giant quasistatic piezoelectric coefficient of >32 pC/N while maintaining a low Young's modulus of 182 MPa, with a record-high figure of merit of piezoelectricity modulus of about 176 pC/(N & BULL; GPa) among all piezoelectric materials.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Study on PSN-PZN-PZT quaternary piezoelectric ceramics near the morphotropic phase boundary
    Zhao, SS
    Wu, H
    Sun, QC
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2005, 123 (03): : 203 - 210
  • [42] Morphotropic phase boundary study of the BNT-BKT lead-free piezoelectric ceramics
    Zhao, Wei
    Zhou, Heping
    Yan, Yongke
    Liu, Dan
    HIGH-PERFORMANCE CERAMICS V, PTS 1 AND 2, 2008, 368-372 : 1908 - 1910
  • [43] Dielectric and piezoelectric properties of PZN-PNN-PT ceramics near the morphotropic phase boundary
    Pan, JS
    Zhang, XW
    Lei, C
    Chen, KP
    RARE METAL MATERIALS AND ENGINEERING, 2003, 32 : 445 - 448
  • [44] Electromechanical properties of PMN-PZT piezoelectric single crystals near morphotropic phase boundary compositions
    Zhang, Shujun
    Lee, Sung-Min
    Kim, Dong-Ho
    Lee, Ho-Yong
    Shrout, Thomas R.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (12) : 3859 - 3862
  • [45] Physical Properties of Self-polarized PZT Thin Films at Compositions around the Morphotropic Phase Boundary
    Araujo, E. B.
    Lima, E. C.
    Bdikin, I. K.
    Kholkin, A. L.
    ELECTROCERAMICS VI, 2014, 975 : 9 - +
  • [46] Large piezoelectric response in paraelectric region of PMN-32PT near morphotropic phase boundary
    Kangama, Moussa
    He, Zhengwang
    Chen, Xiaoming
    Ding, Xiangdong
    Lookman, Turab
    Aktas, Oktay
    APPLIED PHYSICS LETTERS, 2025, 126 (01)
  • [47] Lead-free piezoelectric KNN-BZ-BNT films with a vertical morphotropic phase boundary
    Chen, Wen
    Zhao, Jinyan
    Wang, Lingyan
    Ren, Wei
    Liu, Ming
    AIP ADVANCES, 2015, 5 (07):
  • [48] Morphotropic Phase Boundary of Lead-Free Piezoelectric Ceramics from BNT-KN System
    Pisitpipathsin, N.
    Koontasing, W.
    Eitssayeam, S.
    Intatha, U.
    Rujijanagul, G.
    Pengpat, K.
    Tunkasiri, T.
    SMART MATERIALS, 2008, 55-57 : 225 - +
  • [49] The influence of the morphotropic phase boundary on the dielectric and piezoelectric properties of the PNN-PZ-PT ternary system
    Zhu, XH
    Meng, ZY
    JOURNAL OF MATERIALS SCIENCE, 1996, 31 (08) : 2171 - 2175
  • [50] Radial mode piezoelectric response of La modified lead zirconate titanate in morphotropic phase boundary region
    Shukla, AK
    Agrawal, VK
    Soni, NC
    Singh, DP
    Singh, J
    Srivastava, SL
    FERROELECTRICS, 2004, 308 : 67 - 84