Predicting Statistical Wave Physics in Complex Enclosures: A Stochastic Dyadic Green's Function Approach

被引:4
|
作者
Lin, Shen [1 ]
Luo, Sangrui [1 ]
Ma, Shukai [2 ,3 ]
Feng, Junda [1 ]
Shao, Yang [1 ]
Drikas, Zachary B. B. [4 ]
Addissie, Bisrat D. D. [4 ]
Anlage, Steven M. M. [2 ,3 ]
Antonsen, Thomas [2 ,3 ]
Peng, Zhen [1 ]
机构
[1] Univ Illinois, Ctr Computat Electromagnet, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Maryland, Elect & Comp Engn Dept, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[4] US Naval, Res Lab, Washington, DC 20375 USA
基金
美国国家科学基金会;
关键词
Eigenvalues and eigenfunctions; Random variables; Q-factor; Green products; Trajectory; Radio frequency; Physics; Chaos; electromagnetic coupling; Green function; intentional electromagnetic interference; statistical analysis; RANDOM COUPLING MODEL; REVERBERATION CHAMBERS; ELECTRICALLY LARGE; INTEGRAL-REPRESENTATION; ELECTROMAGNETIC-FIELDS; MICROWAVE; SYSTEMS; ANTENNA; CAVITY; PROPAGATION;
D O I
10.1109/TEMC.2023.3234912
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a physics-oriented, mathematically tractable, statistical wave model for analyzing the wave physics of high-frequency reverberation in complex cavity environments. The key ingredient is a vector dyadic stochastic Green's function (SGF) method that is derived from the Wigner's random matrix theory and Berry's random wave hypothesis. The SGF statistically replicates multipath, ray-chaotic communication between vector sources and vectorial electromagnetic fields at displaced observation points using generic, macroscopic parameters of the cavity environment. The work establishes a physics-based modeling and simulation capability that predicts the probabilistic behavior of backdoor coupling to complex electronic enclosures. Experimental results are supplied to validate the proposed work.
引用
收藏
页码:436 / 453
页数:18
相关论文
共 50 条
  • [41] Dyadic Green's function of an eccentrically stratified sphere
    Moneda, Angela P.
    Chrissoulidis, Dimitrios P.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (03) : 510 - 517
  • [42] Dyadic Green's Function in Waveguide Quantum Electrodynamics
    Liu, Aiyin
    Chew, Weng C.
    2016 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2016, : 1521 - 1522
  • [43] Comments on "Dyadic eigenfunctions and natural modes for hybrid waves in planar media" and "Dyadic Green's function for planar media: A dyadic eigenfunction approach"
    Hanson, George W.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (09) : 2693 - 2693
  • [44] Comments on: Dyadic Green’s function of a PEMC cylinder
    Muhammad Khalid
    Musarat Abbas
    Applied Physics A, 2011, 105 : 1033 - 1033
  • [45] Dyadic Electromagnetic Green's Function for a Graphene Bilayer
    Horing, Norman J. Morgenstern
    Liu, S. Y.
    PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 785 - +
  • [46] An approach to the dyadic Green's functions for a rectangular chirowaveguide
    Zhong Haiyang
    Qin Zhian
    2006 7TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND EM THEORY, VOLS 1 AND 2, PROCEEDINGS, 2006, : 1081 - 1084
  • [47] General Green's function formalism for layered systems: Wave function approach
    Zhang, Shu-Hui
    Yang, Wen
    Chang, Kai
    PHYSICAL REVIEW B, 2017, 95 (07)
  • [48] Dyadic Green's functions for SAW and leaky wave devices
    Liu, W
    Smith, PM
    1997 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 & 2, 1997, : 93 - 98
  • [49] From Thermodynamic States to Biological Function by Einstein's Approach to Statistical Physics
    Schneider, Matthias F.
    Nuschele, Stefan
    Shrivastava, Shamit
    Fillafer, Christian
    Fichtl, Bernhard
    Silman, Israel
    Kaufmann, Konrad
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 292A - 292A
  • [50] Spherical wave expansion of the time-domain free-space Dyadic Green's function
    Azizoglu, SA
    Koc, SS
    Buyukdura, OM
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (03) : 677 - 683