Predicting Statistical Wave Physics in Complex Enclosures: A Stochastic Dyadic Green's Function Approach

被引:4
|
作者
Lin, Shen [1 ]
Luo, Sangrui [1 ]
Ma, Shukai [2 ,3 ]
Feng, Junda [1 ]
Shao, Yang [1 ]
Drikas, Zachary B. B. [4 ]
Addissie, Bisrat D. D. [4 ]
Anlage, Steven M. M. [2 ,3 ]
Antonsen, Thomas [2 ,3 ]
Peng, Zhen [1 ]
机构
[1] Univ Illinois, Ctr Computat Electromagnet, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Maryland, Elect & Comp Engn Dept, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[4] US Naval, Res Lab, Washington, DC 20375 USA
基金
美国国家科学基金会;
关键词
Eigenvalues and eigenfunctions; Random variables; Q-factor; Green products; Trajectory; Radio frequency; Physics; Chaos; electromagnetic coupling; Green function; intentional electromagnetic interference; statistical analysis; RANDOM COUPLING MODEL; REVERBERATION CHAMBERS; ELECTRICALLY LARGE; INTEGRAL-REPRESENTATION; ELECTROMAGNETIC-FIELDS; MICROWAVE; SYSTEMS; ANTENNA; CAVITY; PROPAGATION;
D O I
10.1109/TEMC.2023.3234912
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a physics-oriented, mathematically tractable, statistical wave model for analyzing the wave physics of high-frequency reverberation in complex cavity environments. The key ingredient is a vector dyadic stochastic Green's function (SGF) method that is derived from the Wigner's random matrix theory and Berry's random wave hypothesis. The SGF statistically replicates multipath, ray-chaotic communication between vector sources and vectorial electromagnetic fields at displaced observation points using generic, macroscopic parameters of the cavity environment. The work establishes a physics-based modeling and simulation capability that predicts the probabilistic behavior of backdoor coupling to complex electronic enclosures. Experimental results are supplied to validate the proposed work.
引用
收藏
页码:436 / 453
页数:18
相关论文
共 50 条
  • [31] Dyadic Green's Function of a Cylindrical Isotropic Metasurface
    Hamidi, Masoud
    Nekoei, Hamed Khayam
    Ghaffari-Miab, Mohsen
    2021 20TH INTERNATIONAL CONFERENCE ON MICROWAVE TECHNIQUES (COMITE), 2021, : 137 - +
  • [32] Electromagnetic tomography: dyadic Green's function method
    熊汉亮
    徐苓安
    Progress in Natural Science:Materials International, 2001, (01) : 69 - 77
  • [33] A note on dyadic Green's function of electromagnetic field
    Qin, ZA
    Zhou, GY
    2000 5TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND EM THEORY PROCEEDINGS, 2000, : 158 - 160
  • [34] Envelope Dyadic Green’s Function for Uniaxial Metamaterials
    Stanislav I. Maslovski
    Hodjat Mariji
    Scientific Reports, 9
  • [35] Singularity of the dyadic Green's function for heterogeneous dielectrics
    Guerin, Charles-Antoine
    Gralak, Boris
    Tip, Adriaan
    PHYSICAL REVIEW E, 2007, 75 (05):
  • [36] Dyadic Green's function in gyrotropic bianisotropic media
    Li, LW
    Leong, MS
    Kong, JA
    APMC 2001: ASIA-PACIFIC MICROWAVE CONFERENCE, VOLS 1-3, PROCEEDINGS, 2001, : 456 - 459
  • [37] The equivalent expression of dyadic Green's function for chirowaveguide
    Zhian, Q
    Ji, ZT
    Yan, C
    Shen, DY
    Bo, W
    2004 4th INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, 2004, : 796 - 799
  • [38] Envelope Dyadic Green's Function for Uniaxial Metamaterials
    Maslovski, Stanislav I.
    Mariji, Hodjat
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [39] Electromagnetic tomography: dyadic Green's function method
    Xiong, HL
    Xu, LA
    PROGRESS IN NATURAL SCIENCE, 2001, 11 (01) : 67 - 75
  • [40] Comments on: Dyadic Green's function of a PEMC cylinder
    Khalid, Muhammad
    Abbas, Musarat
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 105 (04): : 1033 - 1033