Predicting Statistical Wave Physics in Complex Enclosures: A Stochastic Dyadic Green's Function Approach

被引:4
|
作者
Lin, Shen [1 ]
Luo, Sangrui [1 ]
Ma, Shukai [2 ,3 ]
Feng, Junda [1 ]
Shao, Yang [1 ]
Drikas, Zachary B. B. [4 ]
Addissie, Bisrat D. D. [4 ]
Anlage, Steven M. M. [2 ,3 ]
Antonsen, Thomas [2 ,3 ]
Peng, Zhen [1 ]
机构
[1] Univ Illinois, Ctr Computat Electromagnet, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Maryland, Elect & Comp Engn Dept, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[4] US Naval, Res Lab, Washington, DC 20375 USA
基金
美国国家科学基金会;
关键词
Eigenvalues and eigenfunctions; Random variables; Q-factor; Green products; Trajectory; Radio frequency; Physics; Chaos; electromagnetic coupling; Green function; intentional electromagnetic interference; statistical analysis; RANDOM COUPLING MODEL; REVERBERATION CHAMBERS; ELECTRICALLY LARGE; INTEGRAL-REPRESENTATION; ELECTROMAGNETIC-FIELDS; MICROWAVE; SYSTEMS; ANTENNA; CAVITY; PROPAGATION;
D O I
10.1109/TEMC.2023.3234912
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a physics-oriented, mathematically tractable, statistical wave model for analyzing the wave physics of high-frequency reverberation in complex cavity environments. The key ingredient is a vector dyadic stochastic Green's function (SGF) method that is derived from the Wigner's random matrix theory and Berry's random wave hypothesis. The SGF statistically replicates multipath, ray-chaotic communication between vector sources and vectorial electromagnetic fields at displaced observation points using generic, macroscopic parameters of the cavity environment. The work establishes a physics-based modeling and simulation capability that predicts the probabilistic behavior of backdoor coupling to complex electronic enclosures. Experimental results are supplied to validate the proposed work.
引用
收藏
页码:436 / 453
页数:18
相关论文
共 50 条
  • [21] On dyadic Green's function of a field vector
    Zhong Haiyang
    2006 7th International Symposium on Antennas, Propagation and EM Theory, Vols 1 and 2, Proceedings, 2006, : 1085 - 1088
  • [22] Dyadic Green's function of a laminar plate
    Reinhardt, A
    Laude, V
    Ballandras, S
    2003 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2003, : 1137 - 1140
  • [23] A Stochastic Green's Function for Solution of Wave Propagation in Wave-Chaotic Environments
    Lin, Shen
    Peng, Zhen
    Antonsen, Thomas M., Jr.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (05) : 3919 - 3933
  • [24] Stochastic Spatial Models in Ecology: A Statistical Physics Approach
    Simone Pigolotti
    Massimo Cencini
    Daniel Molina
    Miguel A. Muñoz
    Journal of Statistical Physics, 2018, 172 : 44 - 73
  • [25] Stochastic Spatial Models in Ecology: A Statistical Physics Approach
    Pigolotti, Simone
    Cencini, Massimo
    Molina, Daniel
    Munoz, Miguel A.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (01) : 44 - 73
  • [26] Scattering by open metal obstacles in a circular waveguide: Dyadic Green's function approach
    Klymko, VA
    Eshrah, IA
    Yakovlev, AB
    Kishk, AA
    Glisson, AW
    IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST, 2004, : 2127 - 2130
  • [27] Vector wave function expansion for dyadic Green's functions for cylindrical chirowaveguides: An alternative representation
    Li, LW
    Lim, SN
    Leong, MS
    Kong, JA
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2000, 14 (05) : 673 - 692
  • [28] Spherical wave expansion of the time domain free-space dyadic Green's function
    Azizoglu, SA
    Koç, SS
    Büyükdura, OM
    ULTRA-WIDEBAND, SHORT-PULSE ELECTROMAGNETICS 5, 2002, : 83 - 88
  • [29] Spherical wave expansion of the time domain free-space dyadic Green's function
    Azizoglu, SA
    Koç, SS
    Büyükdura, OM
    2000 5TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND EM THEORY PROCEEDINGS, 2000, : 285 - 288
  • [30] Spherical superlens analysed by dyadic Green's function
    Shang Ying
    Huo Bing-Zhong
    Meng Chun-Ning
    Yuan Jing-He
    ACTA PHYSICA SINICA, 2010, 59 (11) : 8178 - 8183