Predicting Statistical Wave Physics in Complex Enclosures: A Stochastic Dyadic Green's Function Approach

被引:4
|
作者
Lin, Shen [1 ]
Luo, Sangrui [1 ]
Ma, Shukai [2 ,3 ]
Feng, Junda [1 ]
Shao, Yang [1 ]
Drikas, Zachary B. B. [4 ]
Addissie, Bisrat D. D. [4 ]
Anlage, Steven M. M. [2 ,3 ]
Antonsen, Thomas [2 ,3 ]
Peng, Zhen [1 ]
机构
[1] Univ Illinois, Ctr Computat Electromagnet, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Maryland, Elect & Comp Engn Dept, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[4] US Naval, Res Lab, Washington, DC 20375 USA
基金
美国国家科学基金会;
关键词
Eigenvalues and eigenfunctions; Random variables; Q-factor; Green products; Trajectory; Radio frequency; Physics; Chaos; electromagnetic coupling; Green function; intentional electromagnetic interference; statistical analysis; RANDOM COUPLING MODEL; REVERBERATION CHAMBERS; ELECTRICALLY LARGE; INTEGRAL-REPRESENTATION; ELECTROMAGNETIC-FIELDS; MICROWAVE; SYSTEMS; ANTENNA; CAVITY; PROPAGATION;
D O I
10.1109/TEMC.2023.3234912
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a physics-oriented, mathematically tractable, statistical wave model for analyzing the wave physics of high-frequency reverberation in complex cavity environments. The key ingredient is a vector dyadic stochastic Green's function (SGF) method that is derived from the Wigner's random matrix theory and Berry's random wave hypothesis. The SGF statistically replicates multipath, ray-chaotic communication between vector sources and vectorial electromagnetic fields at displaced observation points using generic, macroscopic parameters of the cavity environment. The work establishes a physics-based modeling and simulation capability that predicts the probabilistic behavior of backdoor coupling to complex electronic enclosures. Experimental results are supplied to validate the proposed work.
引用
收藏
页码:436 / 453
页数:18
相关论文
共 50 条
  • [1] On the Vectorial Property of Stochastic Dyadic Green's Function in Complex Electronic Enclosures
    Lin, Shen
    Shao, Yang
    Peng, Zhen
    2022 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY & SIGNAL/POWER INTEGRITY, EMCSI, 2022, : 350 - 355
  • [2] On the Statistical Analysis of Space-Time Wave Physics in Complex Enclosures
    Lin, Shen
    Peng, Zhen
    IEEE 30TH CONFERENCE ON ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING AND SYSTEMS (EPEPS 2021), 2021,
  • [3] Computationally efficient expressions of the dyadic Green's function for rectangular enclosures
    Marliani, F.
    Ciccolella, A.
    Journal of Electromagnetic Waves and Applications, 2000, 14 (12) : 1635 - 1636
  • [4] A spherical wave representation of the dyadic Green's function for a wedge
    Buyukdura, OM
    Goad, SD
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (01) : 12 - 22
  • [5] Dyadic Green's function for a multilayered planar medium - A dyadic eigenfunction approach
    Hanson, GW
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (12) : 3350 - 3356
  • [6] A new approach to dyadic green's function problem of a field vector
    Zhian, Q
    Yan, C
    Bo, W
    Sheng, DY
    2004 4th INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, 2004, : 793 - 795
  • [7] Approach to calculate normal modes by decomposing the dyadic Green's function
    Yu, Wenhai
    Yue, Wencheng
    Yao, Peijun
    Lu, Yonghua
    Liu, Wen
    OPTICS EXPRESS, 2014, 22 (22): : 26712 - 26719
  • [8] Vector wave function expansions of dyadic Green's functions for bianisotropic media
    Tan, EL
    IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 2002, 149 (01) : 57 - 63
  • [9] Stochastic Green's function approach to disordered systems
    Alvermann, A.
    Fehske, H.
    PROGRESS IN NONEQUILIBRIUM GREEN'S FUNCTIONS III, 2006, 35 : 145 - +
  • [10] Efficient Statistical Model for Predicting Electromagnetic Wave Distribution in Coupled Enclosures
    Ma, Shukai
    Phang, Sendy
    Drikas, Zachary
    Addissie, Bisrat
    Hong, Ronald
    Blakaj, Valon
    Gradoni, Gabriele
    Tanner, Gregor
    Antonsen, Thomas M.
    Ott, Edward
    Anlage, Steven M.
    PHYSICAL REVIEW APPLIED, 2020, 14 (01)