The most general structure of graphs with hamiltonian or hamiltonian connected square

被引:0
|
作者
Ekstein, Jan [1 ,2 ]
Fleischner, Herbert [3 ]
机构
[1] Univ West Bohemia, Fac Appl Sci, Dept Math, Tech 8, Plzen 30614, Czech Republic
[2] Univ West Bohemia, Fac Appl Sci, European Ctr Excellence NTIS New Technol Informat, Tech 8, Plzen 30614, Czech Republic
[3] Vienna Univ Technol, Inst L & Computat, Algorithms & Complex Grp, Favoritenstr 9-11, A-1040 Vienna, Austria
关键词
Hamiltonian cycle; Hamiltonian path; Block-cutvertex graph; Square of a graph; SHORT PROOF; BLOCK; THEME;
D O I
10.1016/j.disc.2023.113702
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the basis of recent results on hamiltonicity, [5], and hamiltonian connectedness, [9], in the square of a 2-block, we determine the most general block-cutvertex structure a graph G may have in order to guarantee that G2 is hamiltonian, hamiltonian connected, respectively. Such an approach was already developed in [10] for hamiltonian total graphs.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Pancyclicity of Hamiltonian and highly connected graphs
    Keevash, Peter
    Sudakov, Benny
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (05) : 456 - 467
  • [22] Mutually orthogonal hamiltonian connected graphs
    Ho, Tung-Yang
    Lin, Cheng-Kuan
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    APPLIED MATHEMATICS LETTERS, 2009, 22 (09) : 1429 - 1431
  • [23] N-HAMILTONIAN CONNECTED GRAPHS
    LICK, DR
    DUKE MATHEMATICAL JOURNAL, 1970, 37 (02) : 387 - &
  • [24] HAMILTONIAN-CONNECTED LINE GRAPHS
    WILLIAMS.JE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A36 - A36
  • [25] Pseudo-Hamiltonian-connected graphs
    Chang, GJ
    Zhu, XD
    DISCRETE APPLIED MATHEMATICS, 2000, 100 (03) : 145 - 153
  • [26] Hamiltonian Walks and Hamiltonian-Connected 3-Path Graphs
    Byers, Alexis
    Hallas, Jamie
    Olejniczak, Drake
    Zayed, Mohra
    Zhang, Ping
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 113 : 213 - 231
  • [27] NOTE ON LOCALLY CONNECTED AND HAMILTONIAN-CONNECTED GRAPHS
    CHARTRAND, G
    GOULD, RJ
    POLIMENI, AD
    ISRAEL JOURNAL OF MATHEMATICS, 1979, 33 (01) : 5 - 8
  • [28] New sufficient conditions for s-Hamiltonian graphs and s-Hamiltonian connected graphs
    Jin, Yan
    Kewen, Zhao
    Lai, Hong-Jian
    Zhou, Ju
    ARS COMBINATORIA, 2008, 88 : 217 - 227
  • [29] HAMILTONIAN LINES IN SQUARE OF BRIDGELESS GRAPHS WITH ARTICULATIONS
    FLEISCHNER, H
    KRONK, HV
    MONATSHEFTE FUR MATHEMATIK, 1972, 76 (02): : 112 - +
  • [30] HAMILTONIAN LINES IN SQUARE OF CUBIC AND PSEUDOCUBIC GRAPHS
    FLEISCHNER, H
    MATHEMATISCHE NACHRICHTEN, 1971, 49 (1-6) : 163 - +