Pancyclicity of Hamiltonian and highly connected graphs

被引:9
|
作者
Keevash, Peter [1 ]
Sudakov, Benny [2 ]
机构
[1] Univ London, Sch Math Sci, London E1 4NS, England
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Graphs; Cycles; Hamiltonian; Pancyclic; CYCLE LENGTHS;
D O I
10.1016/j.jctb.2010.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A celebrated theorem of Chvatal and Erdos says that G is Hamiltonian if kappa(G) >= alpha(G), where kappa(G) denotes the vertex connectivity and alpha(G) the independence number of G. Moreover, Bondy suggested that almost any non-trivial conditions for Hamiltonicity of a graph should also imply pancyclicity. Motivated by this, we prove that if kappa(G) >= 600 alpha(G) then G is pancyclic. This establishes a conjecture of Jackson and Ordaz up to a constant factor. Moreover, we obtain the more general result that if G is Hamiltonian with minimum degree delta(G) >= 600 alpha(G) then G is pancyclic. Improving an old result of Erdos, we also show that G is pancyclic if it is Hamiltonian and n >= 150 alpha(G)(3). Our arguments use the following theorem of independent interest on cycle lengths in graphs: if delta(G) >= 300 alpha(G) then G contains a cycle of length l for all 3 <= l <= delta(G)/81. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:456 / 467
页数:12
相关论文
共 50 条
  • [1] PANCYCLICITY OF HAMILTONIAN LINE GRAPHS
    VANBLANKEN, E
    VANDENHEUVEL, J
    VELDMAN, HJ
    DISCRETE MATHEMATICS, 1995, 138 (1-3) : 379 - 385
  • [2] Pancyclicity of connected circulant graphs
    Bogdanowicz, ZR
    JOURNAL OF GRAPH THEORY, 1996, 22 (02) : 167 - 174
  • [3] Pancyclicity of claw-free hamiltonian graphs
    Trommel, H
    Veldman, HJ
    Verschut, A
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 781 - 789
  • [4] Pancyclicity of claw-free hamiltonian graphs
    Trommel, H.
    Veldman, H.J.
    Verschut, A.
    Discrete Mathematics, 1999, 197-198 : 781 - 789
  • [5] Notes on Hamiltonian Graphs and Hamiltonian-Connected Graphs
    Gao, Yunshu
    Li, Guojun
    Yan, Jin
    ARS COMBINATORIA, 2013, 109 : 405 - 414
  • [6] Vertex Pancyclicity of Quadrangularly Connected Claw-free Graphs
    Xiaodong Chen
    MingChu Li
    Xin Ma
    Graphs and Combinatorics, 2015, 31 : 2125 - 2136
  • [7] A GENERALIZATION OF HAMILTONIAN CONNECTED GRAPHS
    LICK, DR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 193 - &
  • [8] Critical Hamiltonian Connected Graphs
    Modalleliyan, Maliheh
    Omoomi, Behnaz
    ARS COMBINATORIA, 2016, 126 : 13 - 27
  • [9] Hamiltonian-connected graphs
    Zhao Kewen
    Lai, Hong-Jian
    Zhou, Ju
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (12) : 2707 - 2714
  • [10] Hamiltonian connected line graphs
    Li, Deng-Xin
    Lai, Hong-Jian
    Shao, Ye-Hong
    Zhan, Mingquan
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 377 - +