The most general structure of graphs with hamiltonian or hamiltonian connected square

被引:0
|
作者
Ekstein, Jan [1 ,2 ]
Fleischner, Herbert [3 ]
机构
[1] Univ West Bohemia, Fac Appl Sci, Dept Math, Tech 8, Plzen 30614, Czech Republic
[2] Univ West Bohemia, Fac Appl Sci, European Ctr Excellence NTIS New Technol Informat, Tech 8, Plzen 30614, Czech Republic
[3] Vienna Univ Technol, Inst L & Computat, Algorithms & Complex Grp, Favoritenstr 9-11, A-1040 Vienna, Austria
关键词
Hamiltonian cycle; Hamiltonian path; Block-cutvertex graph; Square of a graph; SHORT PROOF; BLOCK; THEME;
D O I
10.1016/j.disc.2023.113702
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the basis of recent results on hamiltonicity, [5], and hamiltonian connectedness, [9], in the square of a 2-block, we determine the most general block-cutvertex structure a graph G may have in order to guarantee that G2 is hamiltonian, hamiltonian connected, respectively. Such an approach was already developed in [10] for hamiltonian total graphs.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Five-connected toroidal graphs are Hamiltonian
    Thomas, R
    Yu, XX
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 69 (01) : 79 - 96
  • [32] On rainbow hamiltonian-connected graphs and digraphs
    2018, Charles Babbage Research Centre (106):
  • [33] Hamiltonian connected claw-free graphs
    Li, M
    GRAPHS AND COMBINATORICS, 2004, 20 (03) : 341 - 362
  • [34] Hamiltonian connected hourglass free line graphs
    Li Dengxin
    Lai, Hong-Han
    Shao, Yehong
    Zhan, Mingquan
    DISCRETE MATHEMATICS, 2008, 308 (12) : 2634 - 2636
  • [35] Neighborhood conditions and Hamiltonian-connected graphs
    Zhao, Kewen
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2013, 16 (2-3) : 137 - 145
  • [36] On 3-connected hamiltonian line graphs
    Chen, Ye
    Fan, Suohai
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2012, 312 (11) : 1877 - 1882
  • [37] On s-hamiltonian-connected line graphs
    Lai, Hong-Han
    Liang, Yanting
    Shao, Yehong
    DISCRETE MATHEMATICS, 2008, 308 (18) : 4293 - 4297
  • [38] Hamiltonian Connected Claw-Free Graphs
    MingChu Li
    Graphs and Combinatorics, 2004, 20 : 341 - 362
  • [39] On s-Hamiltonian-Connected Line Graphs
    Ma, Xiaoling
    Lai, Hong-Jian
    Zhan, Mingquan
    Zhang, Taoye
    Zhou, Ju
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (01) : 297 - 315
  • [40] On the extremal number of edges in hamiltonian connected graphs
    Ho, Tung-Yang
    Lin, Cheng-Kuan
    Tan, Jimmy J. M.
    Hsu, D. Frank
    Hsu, Lih-Hsing
    APPLIED MATHEMATICS LETTERS, 2010, 23 (01) : 26 - 29