Fourier bases of the planar self-affine measures with three digits

被引:0
|
作者
Chen, Ming-Liang [1 ]
Liu, Jing-Cheng [2 ,4 ]
Yao, Yong-Hua [3 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou, Jiangxi, Peoples R China
[2] Hunan Normal Univ, Coll Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha, Hunan, Peoples R China
[3] Fujian Normal Univ, Sch Math & Stat, Fuzhou, Fujian, Peoples R China
[4] Hunan Normal Univ, Coll Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
关键词
Fourier transform; self-affine measure; spectral measure; spectrum; SPECTRALITY; SERIES; UNIFORMITY; FRACTALS; MOCK;
D O I
10.1002/mana.202200299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an expansive real matrix M=rho-1C0 rho-1$M= \def\eqcellsep{&}\begin{bmatrix} \rho <^>{-1} & \mathcal {C}\\ 0& \rho <^>{-1} \end{bmatrix}$ and a noncollinear integer digit set D={(0,0)t,(alpha 1,alpha 2)t,(beta 1,beta 2)t}$D=\lbrace (0,0)<^>t,(\alpha _1,\alpha _2)<^>t,(\beta _1,\beta _2)<^>t\rbrace$ with alpha 2-2 beta 2 is not an element of 3Z$\alpha _2-2\beta _2\notin 3\mathbb {Z}$, let mu M,D$\mu _{M,D}$ be the self-affine measure defined by mu M,D(center dot)=13 n-ary sumation d is an element of D mu M,D(M(center dot)-d)$\mu _{M,D}(\cdot )=\frac{1}{3}\sum _{d\in D}\mu _{M,D}(M(\cdot )-d)$. In this paper, some necessary and sufficient conditions for L2(mu M,D)$L<^>2(\mu _{M,D})$ contains an infinite orthogonal exponential set or mu M,D$\mu _{M,D}$ to be a spectral measure are given.
引用
收藏
页码:4995 / 5011
页数:17
相关论文
共 50 条
  • [21] Spectral self-affine measures on the planar Sierpinski family
    JianLin Li
    Science China Mathematics, 2013, 56 : 1619 - 1628
  • [22] On the spectrality of self-affine measures with four digits on R2
    Chen, Ming-Liang
    Yan, Zhi-Hui
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (01)
  • [23] A class of self-affine sets and self-affine measures
    Feng, DJ
    Wang, Y
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (01) : 107 - 124
  • [24] A Class of Self-Affine Sets and Self-Affine Measures
    De-Jun Feng
    Yang Wang
    Journal of Fourier Analysis and Applications, 2005, 11 : 107 - 124
  • [25] Spectrality of a class of planar self-affine measures with three-element digit sets
    Chen, Yan
    Dong, Xin-Han
    Zhang, Peng-Fei
    ARCHIV DER MATHEMATIK, 2021, 116 (03) : 327 - 334
  • [26] Spectral property of the planar self-affine measures with three-element digit sets
    Chen, Ming-Liang
    Liu, Jing-Cheng
    Su, Juan
    FORUM MATHEMATICUM, 2020, 32 (03) : 673 - 681
  • [27] Spectrality of a class of planar self-affine measures with three-element digit sets
    Yan Chen
    Xin-Han Dong
    Peng-Fei Zhang
    Archiv der Mathematik, 2021, 116 : 327 - 334
  • [28] Hausdorff dimension of planar self-affine sets and measures with overlaps
    Hochman, Michael
    Rapaport, Ariel
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (07) : 2361 - 2441
  • [29] On the orthogonal exponential functions of a class of planar self-affine measures
    Chen, Ming-Liang
    Wang, Xiang-Yang
    Zheng, Jia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (10)
  • [30] Dimensions of equilibrium measures on a class of planar self-affine sets
    Fraser, Jonathan M.
    Jordan, Thomas
    Jurga, Natalia
    JOURNAL OF FRACTAL GEOMETRY, 2020, 7 (01) : 87 - 111