Fourier bases of the planar self-affine measures with three digits

被引:0
|
作者
Chen, Ming-Liang [1 ]
Liu, Jing-Cheng [2 ,4 ]
Yao, Yong-Hua [3 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou, Jiangxi, Peoples R China
[2] Hunan Normal Univ, Coll Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha, Hunan, Peoples R China
[3] Fujian Normal Univ, Sch Math & Stat, Fuzhou, Fujian, Peoples R China
[4] Hunan Normal Univ, Coll Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
关键词
Fourier transform; self-affine measure; spectral measure; spectrum; SPECTRALITY; SERIES; UNIFORMITY; FRACTALS; MOCK;
D O I
10.1002/mana.202200299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an expansive real matrix M=rho-1C0 rho-1$M= \def\eqcellsep{&}\begin{bmatrix} \rho <^>{-1} & \mathcal {C}\\ 0& \rho <^>{-1} \end{bmatrix}$ and a noncollinear integer digit set D={(0,0)t,(alpha 1,alpha 2)t,(beta 1,beta 2)t}$D=\lbrace (0,0)<^>t,(\alpha _1,\alpha _2)<^>t,(\beta _1,\beta _2)<^>t\rbrace$ with alpha 2-2 beta 2 is not an element of 3Z$\alpha _2-2\beta _2\notin 3\mathbb {Z}$, let mu M,D$\mu _{M,D}$ be the self-affine measure defined by mu M,D(center dot)=13 n-ary sumation d is an element of D mu M,D(M(center dot)-d)$\mu _{M,D}(\cdot )=\frac{1}{3}\sum _{d\in D}\mu _{M,D}(M(\cdot )-d)$. In this paper, some necessary and sufficient conditions for L2(mu M,D)$L<^>2(\mu _{M,D})$ contains an infinite orthogonal exponential set or mu M,D$\mu _{M,D}$ to be a spectral measure are given.
引用
收藏
页码:4995 / 5011
页数:17
相关论文
共 50 条
  • [31] Non-spectral problem for the planar self-affine measures
    Liu, Jing-Cheng
    Dong, Xin-Han
    Li, Jian-Lin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (02) : 705 - 720
  • [32] The cardinality of orthogonal exponentials of planar self-affine measures with three-element digit sets
    Chen, Ming-Liang
    Liu, Jing-Cheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (01) : 135 - 156
  • [33] Non-spectrality of planar self-affine measures with three-elements digit set
    Li, Jian-Lin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (02) : 537 - 552
  • [34] ASYMPTOTIC EXPANSIONS FOR FOURIER-TRANSFORM OF SINGULAR SELF-AFFINE MEASURES
    MAKAROV, KA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 187 (01) : 259 - 286
  • [35] Non-spectral problem for a class of planar self-affine measures
    Li, Jian-Lin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (11) : 3125 - 3148
  • [36] Some Results on Planar Self-Affine Measures with Collinear Digit Sets
    Jia Zheng
    Ming-Liang Chen
    Complex Analysis and Operator Theory, 2023, 17
  • [37] Some Results on Planar Self-Affine Measures with Collinear Digit Sets
    Zheng, Jia
    Chen, Ming-Liang
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (08)
  • [38] Spectral Self-Affine Measures on the Generalized Three Sierpinski Gasket
    Yan-Bo Yuan
    Analysis in Theory and Applications, 2015, 31 (04) : 394 - 406
  • [39] Disklikeness of planar self-affine tiles
    Leung, King-Shun
    Lau, Ka-Sing
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (07) : 3337 - 3355
  • [40] On the connectedness of planar self-affine sets
    Liu, Jing-Cheng
    Luo, Jun Jason
    Xie, Heng-Wen
    CHAOS SOLITONS & FRACTALS, 2014, 69 : 107 - 116