Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types

被引:0
|
作者
Kim, Samuel S. [1 ,2 ]
Truong, Buu [2 ,3 ]
Jagadeesh, Karthik [2 ]
Dey, Kushal K. [2 ,4 ]
Shen, Amber Z. [5 ]
Raychaudhuri, Soumya [6 ,7 ]
Kellis, Manolis [1 ]
Price, Alkes L. [1 ,2 ,3 ,8 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[3] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[4] Sloan Kettering Inst, Mem Sloan Kettering Canc Ctr, Computat & Syst Biol Program, New York, NY USA
[5] MIT, Dept Math, Cambridge, MA USA
[6] Brigham & Womens Hosp, Dept Med, Div Genet, Boston, MA USA
[7] Harvard Med Sch, Boston, MA USA
[8] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
关键词
GENOME-WIDE ASSOCIATION; CHROMATIN; BDNF; PATHOPHYSIOLOGY; TRANSCRIPTOME; HERITABILITY; ENRICHMENT; VARIANT; COMMON; GENES;
D O I
10.1038/s41467-024-44742-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Prioritizing disease-critical cell types by integrating genome-wide association studies (GWAS) with functional data is a fundamental goal. Single-cell chromatin accessibility (scATAC-seq) and gene expression (scRNA-seq) have characterized cell types at high resolution, and studies integrating GWAS with scRNA-seq have shown promise, but studies integrating GWAS with scATAC-seq have been limited. Here, we identify disease-critical fetal and adult brain cell types by integrating GWAS summary statistics from 28 brain-related diseases/traits (average N = 298 K) with 3.2 million scATAC-seq and scRNA-seq profiles from 83 cell types. We identified disease-critical fetal (respectively adult) brain cell types for 22 (respectively 23) of 28 traits using scATAC-seq, and for 8 (respectively 17) of 28 traits using scRNA-seq. Significant scATAC-seq enrichments included fetal photoreceptor cells for major depressive disorder, fetal ganglion cells for BMI, fetal astrocytes for ADHD, and adult VGLUT2 excitatory neurons for schizophrenia. Our findings improve our understanding of brain-related diseases/traits and inform future analyses. This study analyzed data from human cells assayed using single-cell technologies, together with data associating genetic variants to disease, to identify fetal and brain cell types whose biologically critically influences the etiology of disease.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Fundamental and practical approaches for single-cell ATAC-seq analysis
    Shi, Peiyu
    Nie, Yage
    Yang, Jiawen
    Zhang, Weixing
    Tang, Zhongjie
    Xu, Jin
    ABIOTECH, 2022, 3 (03) : 212 - 223
  • [42] Fundamental and practical approaches for single-cell ATAC-seq analysis
    Peiyu Shi
    Yage Nie
    Jiawen Yang
    Weixing Zhang
    Zhongjie Tang
    Jin Xu
    aBIOTECH, 2022, 3 : 212 - 223
  • [43] Single-cell ATAC-seq signal extraction and enhancement with SCATE
    Zhicheng Ji
    Weiqiang Zhou
    Wenpin Hou
    Hongkai Ji
    Genome Biology, 21
  • [44] Single-cell ATAC-seq signal extraction and enhancement with SCATE
    Ji, Zhicheng
    Zhou, Weiqiang
    Hou, Wenpin
    Ji, Hongkai
    GENOME BIOLOGY, 2020, 21 (01)
  • [45] Decoding cell replicational age from single-cell ATAC-seq data
    Xiao, Yu
    Zhang, Yi
    NATURE BIOTECHNOLOGY, 2024,
  • [46] Assessment of computational methods for the analysis of single-cell ATAC-seq data
    Chen, Huidong
    Lareau, Caleb A.
    Andreani, Tommaso
    Vinyard, Michael E.
    Garcia, Sara P.
    Clement, Kendell
    Andrade-Navarro, Miguel
    Buenrostro, Jason D.
    Pinello, Luca
    GENOME BIOLOGY, 2019, 20 (01)
  • [47] Modeling Single-Cell ATAC-Seq Data Based on Contrastive Learning
    Lan, Wei
    Zhou, Weihao
    Chen, Qingfeng
    Zheng, Ruiqing
    Pan, Yi
    Chen, Yi-Ping Phoebe
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT I, ISBRA 2024, 2024, 14954 : 473 - 482
  • [48] Assessment of computational methods for the analysis of single-cell ATAC-seq data
    Huidong Chen
    Caleb Lareau
    Tommaso Andreani
    Michael E. Vinyard
    Sara P. Garcia
    Kendell Clement
    Miguel A. Andrade-Navarro
    Jason D. Buenrostro
    Luca Pinello
    Genome Biology, 20
  • [49] Classifying cells with Scasat, a single-cell ATAC-seq analysis tool
    Baker, Syed Murtuza
    Rogerson, Connor
    Hayes, Andrew
    Sharrocks, Andrew D.
    Rattray, Magnus
    NUCLEIC ACIDS RESEARCH, 2019, 47 (02)
  • [50] Modeling fragment counts improves single-cell ATAC-seq analysis
    Laura D. Martens
    David S. Fischer
    Vicente A. Yépez
    Fabian J. Theis
    Julien Gagneur
    Nature Methods, 2024, 21 : 28 - 31