Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types

被引:0
|
作者
Kim, Samuel S. [1 ,2 ]
Truong, Buu [2 ,3 ]
Jagadeesh, Karthik [2 ]
Dey, Kushal K. [2 ,4 ]
Shen, Amber Z. [5 ]
Raychaudhuri, Soumya [6 ,7 ]
Kellis, Manolis [1 ]
Price, Alkes L. [1 ,2 ,3 ,8 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[3] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[4] Sloan Kettering Inst, Mem Sloan Kettering Canc Ctr, Computat & Syst Biol Program, New York, NY USA
[5] MIT, Dept Math, Cambridge, MA USA
[6] Brigham & Womens Hosp, Dept Med, Div Genet, Boston, MA USA
[7] Harvard Med Sch, Boston, MA USA
[8] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
关键词
GENOME-WIDE ASSOCIATION; CHROMATIN; BDNF; PATHOPHYSIOLOGY; TRANSCRIPTOME; HERITABILITY; ENRICHMENT; VARIANT; COMMON; GENES;
D O I
10.1038/s41467-024-44742-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Prioritizing disease-critical cell types by integrating genome-wide association studies (GWAS) with functional data is a fundamental goal. Single-cell chromatin accessibility (scATAC-seq) and gene expression (scRNA-seq) have characterized cell types at high resolution, and studies integrating GWAS with scRNA-seq have shown promise, but studies integrating GWAS with scATAC-seq have been limited. Here, we identify disease-critical fetal and adult brain cell types by integrating GWAS summary statistics from 28 brain-related diseases/traits (average N = 298 K) with 3.2 million scATAC-seq and scRNA-seq profiles from 83 cell types. We identified disease-critical fetal (respectively adult) brain cell types for 22 (respectively 23) of 28 traits using scATAC-seq, and for 8 (respectively 17) of 28 traits using scRNA-seq. Significant scATAC-seq enrichments included fetal photoreceptor cells for major depressive disorder, fetal ganglion cells for BMI, fetal astrocytes for ADHD, and adult VGLUT2 excitatory neurons for schizophrenia. Our findings improve our understanding of brain-related diseases/traits and inform future analyses. This study analyzed data from human cells assayed using single-cell technologies, together with data associating genetic variants to disease, to identify fetal and brain cell types whose biologically critically influences the etiology of disease.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [21] scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning
    Yingxin Lin
    Tung-Yu Wu
    Sheng Wan
    Jean Y. H. Yang
    Wing H. Wong
    Y. X. Rachel Wang
    Nature Biotechnology, 2022, 40 : 703 - 710
  • [22] scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning
    Lin, Yingxin
    Wu, Tung-Yu
    Wan, Sheng
    Yang, Jean Y. H.
    Wong, Wing H.
    Wang, Y. X. Rachel
    NATURE BIOTECHNOLOGY, 2022, 40 (05) : 703 - +
  • [23] Single cell RNA-seq and single cell ATAC-seq analyses during a treatment for dystrophic epidermolysis bullosa
    Shimbo, T.
    Yamazaki, S.
    Kitayama, T.
    Ouchi, Y.
    Yamamoto, R.
    Takaki, E.
    Kikuchi, Y.
    Bruckner-Tuderman, L.
    Uitto, J.
    Kaneda, Y.
    Tamai, K.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (05) : S164 - S164
  • [24] Matched Single-Cell RNA-seq and Single-Cell ATAC-seq of Male Breast Cancers Nominate Salient Cancer-Specific Enhancers
    Wisniewska, Kamila
    Kim, Hyunsoo
    Regner, Matthew J.
    Spanheimer, Philip
    Franco, Hector L.
    CANCER RESEARCH, 2023, 83 (05)
  • [25] Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement
    Jia, Guangshuai
    Preussner, Jens
    Chen, Xi
    Guenther, Stefan
    Yuan, Xuejun
    Yekelchyk, Michail
    Kuenne, Carsten
    Looso, Mario
    Zhou, Yonggang
    Teichmann, Sarah
    Braun, Thomas
    NATURE COMMUNICATIONS, 2018, 9
  • [26] Epigenetic and transcriptional profiling of PBMCs in mild and severe alopecia areata using single-cell RNA-Seq and ATAC-Seq
    Gay-Mimbrera, J.
    Juan-Cencerrado, M.
    Rivera-Ruiz, I.
    Gomez-Arias, P. J.
    Andujar-Pulido, E.
    Aguilar-Luque, M.
    Perez-Alegre, M.
    Ruano, J.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2023, 143 (11) : S360 - S360
  • [27] Enhancer-driven gene regulatory networks inference from single-cell RNA-seq and ATAC-seq data
    Li, Yang
    Ma, Anjun
    Wang, Yizhong
    Guo, Qi
    Wang, Cankun
    Fu, Hongjun
    Liu, Bingqiang
    Ma, Qin
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [28] Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement
    Guangshuai Jia
    Jens Preussner
    Xi Chen
    Stefan Guenther
    Xuejun Yuan
    Michail Yekelchyk
    Carsten Kuenne
    Mario Looso
    Yonggang Zhou
    Sarah Teichmann
    Thomas Braun
    Nature Communications, 9
  • [29] Integrative Analysis of Single-Cell RNA-Seq and ATAC-Seq Data across Treatment Time Points in Pediatric AML
    Wei, Lisa
    Trinh, Diane
    Ries, Rhonda E.
    Jin, Dan
    Corbett, Richard D.
    Smith, Jenny L.
    Furlan, Scott N.
    Meshinchi, Soheil
    Marra, Marco A.
    BLOOD, 2020, 136
  • [30] simATAC: a single-cell ATAC-seq simulation framework
    Zeinab Navidi
    Lin Zhang
    Bo Wang
    Genome Biology, 22