Hulls of constacyclic codes over finite non-chain rings and their applications in quantum codes construction

被引:0
|
作者
Tian, Zhaoyang [1 ]
Gao, Jian [1 ]
Gao, Yun [2 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255000, Peoples R China
[2] Beijing Wuzi Univ, Sch Stat & Data Sci, Beijing 101149, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum construction X method; Constacyclic codes; Hulls; Quantum error-correcting codes; CYCLIC CODES; MDS CODES; AVERAGE DIMENSION;
D O I
10.1007/s11128-023-04230-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study hulls of constacyclic codes of length n over a finite non-chain ring Fq+vFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q+v{\mathbb {F}}_q$$\end{document} with respect to the Euclidean and Hermitian inner products, where v2=v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v<^>2=v$$\end{document}. Under a special Gray map from Fq+vFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q+v{\mathbb {F}}_q$$\end{document} to Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}<^>2_q$$\end{document}, dimensions of hulls of Gary images of constacyclic codes are obtained. Some new quantum error-correcting codes (QECCs) with good parameters are constructed by the quantum construction X method under the Euclidean and Hermitian inner products, respectively. Some of these QECCs are MDS with the minimum distance greater than q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{q}{2}$$\end{document}, and a few of these QECCs are MDS with the minimum distance equal to q.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Skew Constacyclic Codes over Finite Fields and Finite Chain Rings
    Dinh, Hai Q.
    Nguyen, Bac T.
    Sriboonchitta, Songsak
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [42] New Z4 codes from constacyclic codes over a non-chain ring
    Islam, Habibul
    Prakash, Om
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (01):
  • [43] NEW QUANTUM AND LCD CODES FROM CYCLIC CODES OVER A FINITE NON-CHAIN RING
    Rehman, Nadeem Ur
    Azmi, Mohd
    Mohammad, Ghulam
    REPORTS ON MATHEMATICAL PHYSICS, 2023, 91 (02) : 237 - 250
  • [44] QEC and EAQEC codes from cyclic codes over non-chain rings
    Zhang, Xiaoyan
    QUANTUM INFORMATION PROCESSING, 2022, 21 (12)
  • [45] Galois hulls of constacyclic codes over finite fields
    Debnath, Indibar
    Prakash, Om
    Islam, Habibul
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (01): : 111 - 127
  • [46] Galois hulls of constacyclic codes over finite fields
    Indibar Debnath
    Om Prakash
    Habibul Islam
    Cryptography and Communications, 2023, 15 : 111 - 127
  • [47] Optimal p-ary Codes from Constacyclic Codes over a Non-chain Ring R
    Shi Minjia
    CHINESE JOURNAL OF ELECTRONICS, 2014, 23 (04) : 773 - 777
  • [48] Double Constacyclic Codes Over Two Finite Commutative Chain Rings
    Fan, Yun
    Liu, Hualu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (03) : 1521 - 1530
  • [49] Optimal p-ary Codes from Constacyclic Codes over a Non-chain Ring R
    SHI Minjia
    ChineseJournalofElectronics, 2014, 23 (04) : 773 - 777
  • [50] DNA codes over finite local Frobenius non-chain rings of length 4
    Alvarez-Garcia, C.
    Castillo-Guillen, C. A.
    DISCRETE MATHEMATICS, 2021, 344 (07)