Hulls of constacyclic codes over finite non-chain rings and their applications in quantum codes construction

被引:0
|
作者
Tian, Zhaoyang [1 ]
Gao, Jian [1 ]
Gao, Yun [2 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255000, Peoples R China
[2] Beijing Wuzi Univ, Sch Stat & Data Sci, Beijing 101149, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum construction X method; Constacyclic codes; Hulls; Quantum error-correcting codes; CYCLIC CODES; MDS CODES; AVERAGE DIMENSION;
D O I
10.1007/s11128-023-04230-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study hulls of constacyclic codes of length n over a finite non-chain ring Fq+vFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q+v{\mathbb {F}}_q$$\end{document} with respect to the Euclidean and Hermitian inner products, where v2=v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v<^>2=v$$\end{document}. Under a special Gray map from Fq+vFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q+v{\mathbb {F}}_q$$\end{document} to Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}<^>2_q$$\end{document}, dimensions of hulls of Gary images of constacyclic codes are obtained. Some new quantum error-correcting codes (QECCs) with good parameters are constructed by the quantum construction X method under the Euclidean and Hermitian inner products, respectively. Some of these QECCs are MDS with the minimum distance greater than q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{q}{2}$$\end{document}, and a few of these QECCs are MDS with the minimum distance equal to q.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Hermitian Hulls of Constacyclic Codes and Their Applications to Quantum Codes
    Gao, Nan
    Li, Jin
    Huang, Shan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (03)
  • [22] Hermitian Hulls of Constacyclic Codes and Their Applications to Quantum Codes
    Nan Gao
    Jin Li
    Shan Huang
    International Journal of Theoretical Physics, 2022, 61
  • [23] New EAQEC codes from LCP of codes over finite non-chain rings
    Hu, Peng
    Liu, Xiusheng
    QUANTUM INFORMATION PROCESSING, 2025, 24 (03)
  • [24] Construction of LCD and new quantum codes from cyclic codes over a finite non-chain ring
    Islam, Habibul
    Prakash, Om
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (01): : 59 - 73
  • [26] LCP of constacyclic codes over finite chain rings
    Ridhima Thakral
    Sucheta Dutt
    Ranjeet Sehmi
    Journal of Applied Mathematics and Computing, 2023, 69 : 1989 - 2001
  • [27] LCP of constacyclic codes over finite chain rings
    Thakral, Ridhima
    Dutt, Sucheta
    Sehmi, Ranjeet
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 1989 - 2001
  • [28] Constacyclic and cyclic codes over finite chain rings
    National Key Laboratory, ISN, Xidian University, Xi'an, 710071, China
    J. China Univ. Post Telecom., 2009, 3 (122-125):
  • [29] Construction of LCD and new quantum codes from cyclic codes over a finite non-chain ring
    Habibul Islam
    Om Prakash
    Cryptography and Communications, 2022, 14 : 59 - 73
  • [30] A class of constacyclic codes over finite chain rings
    Zhang, Guanghui
    ARS COMBINATORIA, 2019, 146 : 37 - 50