Hulls of constacyclic codes over finite non-chain rings and their applications in quantum codes construction

被引:0
|
作者
Tian, Zhaoyang [1 ]
Gao, Jian [1 ]
Gao, Yun [2 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255000, Peoples R China
[2] Beijing Wuzi Univ, Sch Stat & Data Sci, Beijing 101149, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum construction X method; Constacyclic codes; Hulls; Quantum error-correcting codes; CYCLIC CODES; MDS CODES; AVERAGE DIMENSION;
D O I
10.1007/s11128-023-04230-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study hulls of constacyclic codes of length n over a finite non-chain ring Fq+vFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q+v{\mathbb {F}}_q$$\end{document} with respect to the Euclidean and Hermitian inner products, where v2=v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v<^>2=v$$\end{document}. Under a special Gray map from Fq+vFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q+v{\mathbb {F}}_q$$\end{document} to Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}<^>2_q$$\end{document}, dimensions of hulls of Gary images of constacyclic codes are obtained. Some new quantum error-correcting codes (QECCs) with good parameters are constructed by the quantum construction X method under the Euclidean and Hermitian inner products, respectively. Some of these QECCs are MDS with the minimum distance greater than q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{q}{2}$$\end{document}, and a few of these QECCs are MDS with the minimum distance equal to q.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] SKEW CONSTACYCLIC CODES OVER THE LOCAL FROBENIUS NON-CHAIN RINGS OF ORDER 16
    Aydin, Nuh
    Cengellenmis, Yasemin
    Dertli, Abdullah
    Dougherty, Steven T.
    Salturk, Esengul
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (01) : 53 - 67
  • [32] SKEW CONSTACYCLIC CODES OVER FINITE CHAIN RINGS
    Jitman, Somphong
    Ling, San
    Udomkavanich, Patanee
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (01) : 39 - 63
  • [33] SOME CONSTACYCLIC CODES OVER FINITE CHAIN RINGS
    Batoul, Aicha
    Guenda, Kenza
    Gulliver, T. Aaron
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (04) : 683 - 694
  • [34] The dual of a constacyclic code, self dual, reversible constacyclic codes and constacyclic codes with complementary duals over finite local Frobenius non-chain rings with nilpotency index 3
    Castillo-Guillen, C. A.
    Renteria-Marquez, C.
    Sarmiento-Rosales, E.
    Tapia-Recillas, H.
    Villarreal, R. H.
    DISCRETE MATHEMATICS, 2019, 342 (08) : 2283 - 2296
  • [35] Constacyclic codes over finite local Frobenius non-chain rings of length 5 and nilpotency index 4
    Castillo-Guillen, C. A.
    Renteria-Marquez, C.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2020, 28 (02): : 67 - 91
  • [36] A special class of constacyclic codes over a non-chain ring
    Qian, Li-Qin
    Shi, Min-Jia
    Sok, Lin
    Ping, Jing-Shui
    Sole, Patrick
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONIC INFORMATION ENGINEERING (CEIE 2016), 2016, 116 : 259 - 267
  • [37] Quantum codes from a class of constacyclic codes over finite commutative rings
    Hai Q Dinh
    Bag, Tushar
    Upadhyay, Ashish K.
    Ashraf, Mohammad
    Mohammad, Ghulam
    Chinnakum, Warattaya
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (12)
  • [38] The depth spectrums of constacyclic codes over finite chain rings
    Kong, Bo
    Zheng, Xiying
    Ma, Hongjuan
    DISCRETE MATHEMATICS, 2015, 338 (02) : 256 - 261
  • [39] On isometry and equivalence of constacyclic codes over finite chain rings
    Chibloun, Abdelghaffar
    Ou-azzou, Hassan
    Najmeddine, Mustapha
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2025, 17 (01): : 239 - 263
  • [40] Constacyclic Codes over Finite Chain Rings of Characteristic p
    Alabiad, Sami
    Alkhamees, Yousef
    AXIOMS, 2021, 10 (04)