Topic modeling for multi-omic integration in the human gut microbiome and implications for Autism

被引:1
|
作者
Tataru, Christine [1 ]
Peras, Marie [3 ]
Rutherford, Erica [3 ]
Dunlap, Kaiti [4 ]
Yin, Xiaochen [3 ]
Chrisman, Brianna S. [4 ]
DeSantis, Todd Z. [3 ]
Wall, Dennis P. [5 ,6 ]
Iwai, Shoko [3 ]
David, Maude M. [1 ,2 ]
机构
[1] Oregon State Univ, Dept Microbiol, SW Campus Way, Corvallis, OR 97331 USA
[2] Oregon State Univ, Sch Pharm, SW Campus Way, Corvallis, OR 97331 USA
[3] Second Genome Inc, 1000 Marina Blvd,Suite 500, Brisbane, CA 94005 USA
[4] Serra Mall, Dept Bioengn, Stanford, CA USA
[5] Serra Mall, Dept Biomed Data Sci, Stanford, CA USA
[6] Dept Pediat Syst Med, 1265 Welch Rd, Stanford, CA USA
关键词
DIAGNOSTIC OBSERVATION SCHEDULE; GAMMA-AMINOBUTYRIC-ACID; ESCHERICHIA-COLI; STEROID SULFATASE; SPECTRUM; CAFFEINE; METABOLITE; PROTEINS; HETEROGENEITY; ASSOCIATION;
D O I
10.1038/s41598-023-38228-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
While healthy gut microbiomes are critical to human health, pertinent microbial processes remain largely undefined, partially due to differential bias among profiling techniques. By simultaneously integrating multiple profiling methods, multi-omic analysis can define generalizable microbial processes, and is especially useful in understanding complex conditions such as Autism. Challenges with integrating heterogeneous data produced by multiple profiling methods can be overcome using Latent Dirichlet Allocation (LDA), a promising natural language processing technique that identifies topics in heterogeneous documents. In this study, we apply LDA to multi-omic microbial data (16S rRNA amplicon, shotgun metagenomic, shotgun metatranscriptomic, and untargeted metabolomic profiling) from the stool of 81 children with and without Autism. We identify topics, or microbial processes, that summarize complex phenomena occurring within gut microbial communities. We then subset stool samples by topic distribution, and identify metabolites, specifically neurotransmitter precursors and fatty acid derivatives, that differ significantly between children with and without Autism. We identify clusters of topics, deemed "cross-omic topics", which we hypothesize are representative of generalizable microbial processes observable regardless of profiling method. Interpreting topics, we find each represents a particular diet, and we heuristically label each cross-omic topic as: healthy/general function, age-associated function, transcriptional regulation, and opportunistic pathogenesis.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] SHARE-Topic: Bayesian interpretable modeling of single-cell multi-omic data
    Nour El Kazwini
    Guido Sanguinetti
    Genome Biology, 25
  • [22] SHARE-Topic: Bayesian interpretable modeling of single-cell multi-omic data
    El Kazwini, Nour
    Sanguinetti, Guido
    GENOME BIOLOGY, 2024, 25 (01)
  • [23] Editorial: Microbiome in the first 1000 days: multi-omic interactions, physiological effects, and clinical implications
    Taddei, Carla R.
    Neu, Josef
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13
  • [24] A multi-omic brain gut microbiome signature differs between IBS subjects with different bowel habits
    Sarnoff, Rachel P.
    Bhatt, Ravi R.
    Osadchiy, Vadim
    Dong, Tien
    Labus, Jennifer S.
    Kilpatrick, Lisa A.
    Chen, Zixi
    Subramanyam, Vishvak
    Zhang, Yurui
    Ellingson, Benjamin M.
    Naliboff, Bruce
    Chang, Lin
    Mayer, Emeran A.
    Gupta, Arpana
    NEUROPHARMACOLOGY, 2023, 225
  • [25] Multi-omic Analysis of the Gut Microbiome in Rats with Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy
    Maria Eduarda T. Oliveira
    Gustavo V. B. Paulino
    Erivaldo D. dos Santos Júnior
    Francisca A. da Silva Oliveira
    Vânia M. M. Melo
    Jeferson S. Ursulino
    Thiago M. de Aquino
    Ashok K. Shetty
    Melissa Fontes Landell
    Daniel Leite Góes Gitaí
    Molecular Neurobiology, 2022, 59 : 6429 - 6446
  • [26] Multi-omic data integration in food science and analysis
    Herraiz-Gil, Sara
    del Carmen de Arriba, Maria
    Escamez, Maria J.
    Leon, Carlos
    CURRENT OPINION IN FOOD SCIENCE, 2023, 52
  • [27] MOSS: multi-omic integration with sparse value decomposition
    Gonzalez-Reymundez, Agustin
    Grueneberg, Alexander
    Lu, Guanqi
    Alves, Filipe Couto
    Rincon, Gonzalo
    Vazquez, Ana, I
    BIOINFORMATICS, 2022, 38 (10) : 2956 - 2958
  • [28] Multi-omic Analysis of the Gut Microbiome in Rats with Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy
    Oliveira, Maria Eduarda T.
    Paulino, Gustavo V. B.
    dos Santos Junior, Erivaldo D.
    da Silva Oliveira, Francisca A.
    Melo, Vania M. M.
    Ursulino, Jeferson S.
    de Aquino, Thiago M.
    Shetty, Ashok K.
    Landell, Melissa Fontes
    Goes Gitai, Daniel Leite
    MOLECULAR NEUROBIOLOGY, 2022, 59 (10) : 6429 - 6446
  • [29] Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration
    Sambhawa Priya
    Michael B. Burns
    Tonya Ward
    Ruben A. T. Mars
    Beth Adamowicz
    Eric F. Lock
    Purna C. Kashyap
    Dan Knights
    Ran Blekhman
    Nature Microbiology, 2022, 7 : 780 - 795
  • [30] Multi-omic interactions in the gut of children at the onset of islet autoimmunity
    Patrick G. Gavin
    Ki Wook Kim
    Maria E. Craig
    Michelle M. Hill
    Emma E. Hamilton-Williams
    Microbiome, 10