SHARE-Topic: Bayesian interpretable modeling of single-cell multi-omic data

被引:1
|
作者
El Kazwini, Nour [1 ]
Sanguinetti, Guido [1 ]
机构
[1] Scuola Int Super Studi Avanzati, Theoret & Sci Data Sci, Trieste, Italy
关键词
Gene regulation; Single-cell multi-omics; Bayesian modeling; Interpretability; Gene regulator in cancer; Lymphoma; CHROMATIN; FOXP1;
D O I
10.1186/s13059-024-03180-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Multi-omic single-cell technologies, which simultaneously measure the transcriptional and epigenomic state of the same cell, enable understanding epigenetic mechanisms of gene regulation. However, noisy and sparse data pose fundamental statistical challenges to extract biological knowledge from complex datasets. SHARE-Topic, a Bayesian generative model of multi-omic single cell data using topic models, aims to address these challenges. SHARE-Topic identifies common patterns of co-variation between different omic layers, providing interpretable explanations for the data complexity. Tested on data from different technological platforms, SHARE-Topic provides low dimensional representations recapitulating known biology and defines associations between genes and distal regulators in individual cells.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] SHARE-Topic: Bayesian interpretable modeling of single-cell multi-omic data
    Nour El Kazwini
    Guido Sanguinetti
    Genome Biology, 25
  • [2] Joint probabilistic modeling of single-cell multi-omic data with totalVI
    Gayoso, Adam
    Steier, Zoe
    Lopez, Romain
    Regier, Jeffrey
    Nazor, Kristopher L.
    Streets, Aaron
    Yosef, Nir
    NATURE METHODS, 2021, 18 (03) : 272 - +
  • [3] Joint probabilistic modeling of single-cell multi-omic data with totalVI
    Adam Gayoso
    Zoë Steier
    Romain Lopez
    Jeffrey Regier
    Kristopher L. Nazor
    Aaron Streets
    Nir Yosef
    Nature Methods, 2021, 18 : 272 - 282
  • [4] MOSCATO: a supervised approach for analyzing multi-Omic single-Cell data
    Towle-Miller, Lorin M.
    Miecznikowski, Jeffrey C.
    BMC GENOMICS, 2022, 23 (01)
  • [5] MOSCATO: a supervised approach for analyzing multi-Omic single-Cell data
    Lorin M. Towle-Miller
    Jeffrey C. Miecznikowski
    BMC Genomics, 23
  • [6] Learning Consistency and Specificity of Cells From Single-Cell Multi-Omic Data
    Wang, Haiyue
    Liu, Zaiyi
    Ma, Xiaoke
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) : 3134 - 3145
  • [7] PyLiger: scalable single-cell multi-omic data integration in Python']Python
    Lu, Lu
    Welch, Joshua D.
    BIOINFORMATICS, 2022, 38 (10) : 2946 - 2948
  • [8] A multi-omic single-cell landscape of human gynecologic malignancies
    Regner, Matthew J.
    Wisniewska, Kamila
    Garcia-Recio, Susana
    Thennavan, Aatish
    Mendez-Giraldez, Raul
    Malladi, Venkat S.
    Hawkins, Gabrielle
    Parker, Joel S.
    Perou, Charles M.
    Bae-Jump, Victoria L.
    Franco, Hector L.
    MOLECULAR CELL, 2021, 81 (23) : 4924 - +
  • [9] Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data
    Kim, Daniel
    Tran, Andy
    Kim, Hani Jieun
    Lin, Yingxin
    Yang, Jean Yee Hwa
    Yang, Pengyi
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2023, 9 (01)
  • [10] Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data
    Daniel Kim
    Andy Tran
    Hani Jieun Kim
    Yingxin Lin
    Jean Yee Hwa Yang
    Pengyi Yang
    npj Systems Biology and Applications, 9