MOSS: multi-omic integration with sparse value decomposition

被引:1
|
作者
Gonzalez-Reymundez, Agustin [1 ]
Grueneberg, Alexander [1 ]
Lu, Guanqi [1 ]
Alves, Filipe Couto [1 ]
Rincon, Gonzalo [2 ]
Vazquez, Ana, I [1 ]
机构
[1] Michigan State Univ, Dept Epidemiol & Biostat, E Lansing, MI 48824 USA
[2] Genus PLC Inc, Genome Sci R&D, De Forest, MI USA
关键词
PRINCIPAL COMPONENT ANALYSIS; BREAST; PREDICTION; JOINT;
D O I
10.1093/bioinformatics/btac179
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This article presents multi-omic integration with sparse value decomposition (MOSS), a free and open-source R package for integration and feature selection in multiple large omics datasets. This package is computationally efficient and offers biological insight through capabilities, such as cluster analysis and identification of informative omic features.
引用
收藏
页码:2956 / 2958
页数:3
相关论文
共 50 条
  • [1] Editorial: Multi-omic data integration
    Nardini, Christine
    Dent, Jennifer
    Tieri, Paolo
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2015, 3
  • [2] Multi-omic integration by machine learning (MIMaL)
    Dickinson, Quinn
    Aufschnaiter, Andreas
    Ott, Martin
    Meyer, Jesse G.
    BIOINFORMATICS, 2022, 38 (21) : 4908 - 4918
  • [3] A new approach for multi-omic data integration
    Zuo, Yiming
    Yu, Guoqiang
    Zhang, Chi
    Ressom, Habtom W.
    2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2014,
  • [4] Editorial: Multi-omic Data Integration in Oncology
    Finotello, Francesca
    Calura, Enrica
    Risso, Davide
    Hautaniemi, Sampsa
    Romualdi, Chiara
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [5] Multi-omic data integration in food science and analysis
    Herraiz-Gil, Sara
    del Carmen de Arriba, Maria
    Escamez, Maria J.
    Leon, Carlos
    CURRENT OPINION IN FOOD SCIENCE, 2023, 52
  • [6] Multi-omic approaches for host-microbiome data integration
    Chetty, Ashwin
    Blekhman, Ran
    GUT MICROBES, 2024, 16 (01)
  • [7] NEMO: cancer subtyping by integration of partial multi-omic data
    Rappoport, Nimrod
    Shamir, Ron
    BIOINFORMATICS, 2019, 35 (18) : 3348 - 3356
  • [8] Multi-omic data integration enables discovery of hidden biological regularities
    Ebrahim, Ali
    Brunk, Elizabeth
    Tan, Justin
    O'Brien, Edward J.
    Kim, Donghyuk
    Szubin, Richard
    Lerman, Joshua A.
    Lechner, Anna
    Sastry, Anand
    Bordbar, Aarash
    Feist, Adam M.
    Palsson, Bernhard O.
    NATURE COMMUNICATIONS, 2016, 7
  • [9] Multi-omic data integration enables discovery of hidden biological regularities
    Ali Ebrahim
    Elizabeth Brunk
    Justin Tan
    Edward J. O'Brien
    Donghyuk Kim
    Richard Szubin
    Joshua A. Lerman
    Anna Lechner
    Anand Sastry
    Aarash Bordbar
    Adam M. Feist
    Bernhard O. Palsson
    Nature Communications, 7
  • [10] MONET: Multi-omic module discovery by omic selection
    Rappoport, Nimrod
    Safra, Roy
    Shamir, Ron
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)