Optimal Cislunar Architecture Design Using Monte Carlo Tree Search Methods

被引:3
|
作者
Klonowski, Michael [1 ]
Holzinger, Marcus J. [1 ]
Fahrner, Naomi Owens [2 ]
机构
[1] Univ Colorado, Smead Aerosp Engn Sci, 3775 Discovery Dr, Boulder, CO 80303 USA
[2] Ball Aerosp, 10 Longs Peak Dr, Broomfield, CO 80021 USA
来源
JOURNAL OF THE ASTRONAUTICAL SCIENCES | 2023年 / 70卷 / 03期
关键词
Monte Carlo Tree Search; Space domain awareness; Reinforcement learning; Cislunar architecture; MULTIOBJECTIVE OPTIMIZATION;
D O I
10.1007/s40295-023-00383-x
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A novel multi-objective Monte Carlo Tree Search (MO-MCTS) algorithm is developed and implemented for use in architecture design problems. This algorithm is used with two well-known problems with known solutions in order to verify its performance. It is then used in a highly nonlinear Cislunar architecture design problem with no known analytical solutions. The results of this implementation display the ability of MO-MCTS to effectively navigate the state space of mixed integer nonlinear programming problems and emphasize the versatility of MO-MCTS for designing critical Cislunar architecture.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Optimal Cislunar Architecture Design Using Monte Carlo Tree Search Methods
    Michael Klonowski
    Marcus J. Holzinger
    Naomi Owens Fahrner
    The Journal of the Astronautical Sciences, 70
  • [2] Sensor tasking in the cislunar regime using Monte Carlo Tree Search
    Fedeler, Samuel
    Holzinger, Marcus
    Whitacre, William
    ADVANCES IN SPACE RESEARCH, 2022, 70 (03) : 792 - 811
  • [3] A Comprehensive Optimal Design of Inductors Using Monte Carlo Tree Search
    Yin, Shuli
    Sato, Hayaho
    Igarashi, Hajime
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (03)
  • [4] AlphaTruss: Monte Carlo Tree Search for Optimal Truss Layout Design
    Luo, Ruifeng
    Wang, Yifan
    Xiao, Weifang
    Zhao, Xianzhong
    BUILDINGS, 2022, 12 (05)
  • [5] Approximation Methods for Monte Carlo Tree Search
    Aksenov, Kirill
    Panov, Aleksandr, I
    PROCEEDINGS OF THE FOURTH INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'19), 2020, 1156 : 68 - 74
  • [6] A Survey of Monte Carlo Tree Search Methods
    Browne, Cameron B.
    Powley, Edward
    Whitehouse, Daniel
    Lucas, Simon M.
    Cowling, Peter I.
    Rohlfshagen, Philipp
    Tavener, Stephen
    Perez, Diego
    Samothrakis, Spyridon
    Colton, Simon
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2012, 4 (01) : 1 - 43
  • [7] Neural Architecture Search Using Deep Neural Networks and Monte Carlo Tree Search
    Wang, Linnan
    Zhao, Yiyang
    Yuu Jinnai
    Tian, Yuandong
    Fonseca, Rodrigo
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9983 - 9991
  • [8] Accelerating copolymer inverse design using monte carlo tree search
    Patra, Tarak K.
    Loeffler, Troy D.
    Sankaranarayanan, Subramanian K. R. S.
    NANOSCALE, 2020, 12 (46) : 23653 - 23662
  • [9] Efficient graph neural architecture search using Monte Carlo Tree search and prediction network
    Deng, TianJin
    Wu, Jia
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [10] Monte Carlo tree search for materials design and discovery
    Dieb, Thaer M.
    Ju, Shenghong
    Shiomi, Junichiro
    Tsuda, Koji
    MRS COMMUNICATIONS, 2019, 9 (02) : 532 - 536