Existence and asymptotic stability of mild solution to fractional Keller-Segel-Navier-Stokes system

被引:0
|
作者
Jiang, Ziwen [1 ]
Wang, Lizhen [1 ,2 ]
机构
[1] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian, Peoples R China
[2] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710127, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotic stability; fractional Keller-Segel-Navier-Stokes model; mild solution; well-posedness; GLOBAL EXISTENCE; BLOW-UP; DIFFUSION; MODEL; BEHAVIOR;
D O I
10.1002/mma.10096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the Cauchy problem for time-space fractional Keller-Segel-Navier-Stokes model in Double-struck capital Rd(d >= 2)$$ {\mathrm{\mathbb{R}}}<^>d\kern0.1em \left(d\ge 2\right) $$, which can describe the memory effect and anomalous diffusion of the considered system. The local and global existence and uniqueness in weak Lp$$ {L}<^>p $$ space are obtained by means of abstract fixed point theorem. Moreover, we explore the asymptotic stability of solutions as time goes to infinity.
引用
收藏
页码:9814 / 9833
页数:20
相关论文
共 50 条
  • [11] Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production
    Lu Yang
    Xi Liu
    Zhibo Hou
    Czechoslovak Mathematical Journal, 2023, 73 : 49 - 70
  • [12] ASYMPTOTIC BEHAVIOR OF SMALL-DATA SOLUTIONS TO A KELLER-SEGEL-NAVIER-STOKES SYSTEM WITH INDIRECT SIGNAL PRODUCTION
    Yang, Lu
    Liu, Xi
    Hou, Zhibo
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (01) : 49 - 70
  • [13] Well-posedness of Keller-Segel-Navier-Stokes equations with fractional diffusion in Besov spaces
    Jiang, Ziwen
    Wang, Lizhen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [14] Global Well-Posedness for the 2D Keller-Segel-Navier-Stokes System with Fractional Diffusion
    Wang, Chaoyong
    Jia, Qi
    Zhang, Qian
    ACTA APPLICANDAE MATHEMATICAE, 2024, 194 (01)
  • [15] Blow-up criteria for a Keller-Segel-Navier-Stokes system in a bounded domain
    Chen, Miaochao
    Chen, Fangqi
    Lu, Shengqi
    Liu, Qilin
    APPLIED MATHEMATICS LETTERS, 2023, 139
  • [16] Global stability of homogeneous steady states inscaling-invariant spaces for a Keller-Segel-Navier-Stokes system
    Jiang, Jie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (02) : 659 - 692
  • [17] A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization
    Winkler, Michael
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (05) : 1339 - 1401
  • [18] EXISTENCE OF SOLUTIONS TO THE PATLAK--KELLER--SEGEL--NAVIER--STOKES SYSTEM
    Gao, Yuetian
    Han, Fangyu
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (05) : 6798 - 6821
  • [19] Boundedness and asymptotic stabilization in a two-dimensional Keller-Segel-Navier-Stokes system with sub-logistic source
    Dai, Feng
    Xiang, Tian
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (11): : 2237 - 2294
  • [20] Global solvability and asymptotic stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with indirect signal production
    Dai, Feng
    Liu, Bin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (10): : 2091 - 2163