Existence and asymptotic stability of mild solution to fractional Keller-Segel-Navier-Stokes system

被引:0
|
作者
Jiang, Ziwen [1 ]
Wang, Lizhen [1 ,2 ]
机构
[1] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian, Peoples R China
[2] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710127, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotic stability; fractional Keller-Segel-Navier-Stokes model; mild solution; well-posedness; GLOBAL EXISTENCE; BLOW-UP; DIFFUSION; MODEL; BEHAVIOR;
D O I
10.1002/mma.10096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the Cauchy problem for time-space fractional Keller-Segel-Navier-Stokes model in Double-struck capital Rd(d >= 2)$$ {\mathrm{\mathbb{R}}}<^>d\kern0.1em \left(d\ge 2\right) $$, which can describe the memory effect and anomalous diffusion of the considered system. The local and global existence and uniqueness in weak Lp$$ {L}<^>p $$ space are obtained by means of abstract fixed point theorem. Moreover, we explore the asymptotic stability of solutions as time goes to infinity.
引用
收藏
页码:9814 / 9833
页数:20
相关论文
共 50 条