Application of Cairns-Tsallis distribution to the dipole-type Hamiltonian mean-field model

被引:3
|
作者
Sanchez, Ewin [1 ,2 ]
Atenas, Boris [3 ]
机构
[1] Univ Serena, Inst Invest Multidisciplinario Ciencia & Tecnol, La Serena 170000, Chile
[2] Univ Serena, Dept Fis, Ave Juan Cisternas 1200, La Serena 170000, Chile
[3] Univ Tarapaca, Fac Ciencias, Dept Fis, Casilla 7-D, Arica, Chile
关键词
PLASMA; SUPERSTATISTICS; ELECTRONS; KAPPA;
D O I
10.1103/PhysRevE.108.044123
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We found that the rare distribution of velocities in quasisteady states of the dipole-type Hamiltonian mean-field model can be explained by the Cairns-Tsallis distribution, which has been used to describe nonthermal electron populations of some plasmas. This distribution gives us two interesting parameters which allow an adequate interpretation of the output data obtained through molecular dynamics simulations, namely, the characteristic parameter q of the so-called nonextensive systems and the alpha parameter, which can be seen as an indicator of the number of particles with nonequilibrium behavior in the distribution. Our analysis shows that fit parameters obtained for the dipole-type Hamiltonian mean-field simulated system are ad hoc with some nonthermality and nonextensivity constraints found by different authors for plasma systems described through the Cairns-Tsallis distribution.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Mean-field derivation of the interacting boson model Hamiltonian and exotic nuclei
    Nomura, Kosuke
    Shimizu, Noritaka
    Otsuka, Takaharu
    PHYSICAL REVIEW LETTERS, 2008, 101 (14)
  • [22] Nonequilibrium phase transitions and violent relaxation in the Hamiltonian mean-field model
    Rocha Filho, T. M.
    Amato, M. A.
    Figueiredo, A.
    PHYSICAL REVIEW E, 2012, 85 (06):
  • [23] Dynamics and nonequilibrium states in the Hamiltonian mean-field model: A closer look
    Zanette, DH
    Montemurro, MA
    PHYSICAL REVIEW E, 2003, 67 (03):
  • [24] Breakdown of the mean-field approximation in a wealth distribution model
    Medo, M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [25] Long-time behavior of quasistationary states of the Hamiltonian mean-field model
    Campa, Alessandro
    Giansanti, Andrea
    Morelli, Gianluca
    PHYSICAL REVIEW E, 2007, 76 (04):
  • [26] Truncated Levy flights and weak ergodicity breaking in the Hamiltonian mean-field model
    Figueiredo, A.
    Rocha Filho, T. M.
    Amato, M. A.
    Oliveira, Z. T., Jr.
    Matsushita, R.
    PHYSICAL REVIEW E, 2014, 89 (02):
  • [27] Out-of-equilibrium solutions in the XY-Hamiltonian Mean-Field model
    Leoncini, X.
    Van Den Berg, T. L.
    Fanelli, D.
    EPL, 2009, 86 (02)
  • [28] A dynamic mean-field glass model with reversible mode coupling and a trivial Hamiltonian
    Kawasaki, K
    Kin, B
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (09) : 2265 - 2273
  • [29] Capital distribution and portfolio performance in the mean-field Atlas model
    Jourdain, Benjamin
    Reygner, Julien
    ANNALS OF FINANCE, 2015, 11 (02) : 151 - 198
  • [30] A MEAN-FIELD TYPE APPROXIMATION FOR THE (T-J) MODEL
    IZYUMOV, YA
    LETFULOV, BM
    SHIPITSYN, EV
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (27) : 5137 - 5154