Dynamics and nonequilibrium states in the Hamiltonian mean-field model: A closer look

被引:28
|
作者
Zanette, DH [1 ]
Montemurro, MA
机构
[1] Ctr Atom Bariloche, Consejo Nacl Invest Cient & Tecn, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Univ Nacl Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 03期
关键词
D O I
10.1103/PhysRevE.67.031105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We critically revisit the evidence for the existence of quasistationary states in the globally coupled XY (or Hamiltonian mean-field) model. A slow-relaxation regime at long times is clearly revealed by numerical realizations of the model, but no traces of quasistationarity are found during the earlier stages of the evolution. We point out the nonergodic properties of this system in the short-time range, which makes a standard statistical description unsuitable. New aspects of the evolution during the nonergodic regime, and of the energy distribution function in the final approach to equilibrium, are disclosed.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Out-of-equilibrium phase transitions in the Hamiltonian mean-field model: A closer look
    Staniscia, F.
    Chavanis, P. H.
    De Ninno, G.
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [2] Nonequilibrium phase transitions and violent relaxation in the Hamiltonian mean-field model
    Rocha Filho, T. M.
    Amato, M. A.
    Figueiredo, A.
    PHYSICAL REVIEW E, 2012, 85 (06):
  • [3] Geometry and molecular dynamics of the Hamiltonian mean-field model in a magnetic field
    Araujo, Rubia
    Miranda Filho, L. H.
    Santos, Fernando A. N.
    Coutinho-Filho, M. D.
    PHYSICAL REVIEW E, 2021, 103 (01)
  • [4] ON THE INFLUENCE OF MICROSCOPIC DYNAMICS IN NONEQUILIBRIUM STATIONARY STATES - A MEAN-FIELD EXAMPLE
    MUNOZ, MA
    GARRIDO, PL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (16): : 3909 - 3919
  • [5] Chaos in the Hamiltonian mean-field model
    Ginelli, Francesco
    Takeuchi, Kazumasa A.
    Chate, Hugues
    Politi, Antonio
    Torcini, Alessandro
    PHYSICAL REVIEW E, 2011, 84 (06)
  • [6] Action diffusion and lifetimes of quasistationary states in the Hamiltonian mean-field model
    Ettoumi, W.
    Firpo, M. -C.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [7] Hard-core collisional dynamics in Hamiltonian mean-field model
    Melo, I
    Figueiredo, A.
    Rocha Filho, T. M.
    Miranda Filho, L. H.
    Elskens, Y.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 87
  • [8] Self-consistent inhomogeneous steady states in Hamiltonian mean-field dynamics
    de Buyl, Pierre
    Mukamel, David
    Ruffo, Stefano
    PHYSICAL REVIEW E, 2011, 84 (06):
  • [9] The Vlasov equation and the Hamiltonian mean-field model
    Barré, J
    Bouchet, F
    Dauxois, T
    Ruffo, S
    Yamaguchi, YY
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (01) : 177 - 183
  • [10] Glassy phase in the Hamiltonian mean-field model
    Pluchino, A
    Latora, V
    Rapisarda, A
    PHYSICAL REVIEW E, 2004, 69 (05): : 4