Dynamics and nonequilibrium states in the Hamiltonian mean-field model: A closer look

被引:28
|
作者
Zanette, DH [1 ]
Montemurro, MA
机构
[1] Ctr Atom Bariloche, Consejo Nacl Invest Cient & Tecn, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Univ Nacl Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 03期
关键词
D O I
10.1103/PhysRevE.67.031105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We critically revisit the evidence for the existence of quasistationary states in the globally coupled XY (or Hamiltonian mean-field) model. A slow-relaxation regime at long times is clearly revealed by numerical realizations of the model, but no traces of quasistationarity are found during the earlier stages of the evolution. We point out the nonergodic properties of this system in the short-time range, which makes a standard statistical description unsuitable. New aspects of the evolution during the nonergodic regime, and of the energy distribution function in the final approach to equilibrium, are disclosed.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Precise determination of the nonequilibrium tricritical point based on Lynden-Bell theory in the Hamiltonian mean-field model
    Ogawa, Shun
    Yamaguchi, Yoshiyuki Y.
    PHYSICAL REVIEW E, 2011, 84 (06):
  • [22] Core-Halo Distribution in the Hamiltonian Mean-Field Model
    Pakter, Renato
    Levin, Yan
    PHYSICAL REVIEW LETTERS, 2011, 106 (20)
  • [23] Numerical resolution of the Vlasov equation for the Hamiltonian Mean-Field model
    de Buyl, Pierre
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (08) : 2133 - 2139
  • [24] Partial mean-field model for neurotransmission dynamics
    Montefusco, Alberto
    Helfmann, Luzie
    Okunola, Toluwani
    Winkelmann, Stefanie
    Schuette, Christof
    MATHEMATICAL BIOSCIENCES, 2024, 369
  • [25] Saddles and dynamics in a solvable mean-field model
    Angelani, L
    Ruocco, G
    Zamponi, F
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (18): : 8301 - 8306
  • [26] Mean-Field Dynamics for the Nelson Model with Fermions
    Leopold, Nikolai
    Petrat, Soeren
    ANNALES HENRI POINCARE, 2019, 20 (10): : 3471 - 3508
  • [27] Glassy mean-field dynamics of the backgammon model
    Franz, S
    Ritort, F
    JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (1-2) : 131 - 150
  • [28] Glauber Dynamics for the Mean-Field Potts Model
    P. Cuff
    J. Ding
    O. Louidor
    E. Lubetzky
    Y. Peres
    A. Sly
    Journal of Statistical Physics, 2012, 149 : 432 - 477
  • [29] ON THE DYNAMICS OF A STOCHASTIC NONLINEAR MEAN-FIELD MODEL
    BREY, JJ
    CASADO, JM
    MORILLO, M
    PHYSICA A, 1984, 128 (03): : 497 - 508
  • [30] Mean-Field Dynamics for the Nelson Model with Fermions
    Nikolai Leopold
    Sören Petrat
    Annales Henri Poincaré, 2019, 20 : 3471 - 3508