Chaos in the Hamiltonian mean-field model

被引:24
|
作者
Ginelli, Francesco [1 ,2 ]
Takeuchi, Kazumasa A. [3 ,4 ]
Chate, Hugues [3 ]
Politi, Antonio [2 ,5 ,6 ]
Torcini, Alessandro [5 ,6 ,7 ]
机构
[1] CNR, Ist Sistemi Complessi, I-00185 Rome, Italy
[2] Univ Aberdeen, Kings Coll, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
[3] CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[4] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[5] CNR, Ist Sistemi Complessi, I-50019 Sesto Fiorentino, Italy
[6] Ctr Interdipartimentale Studio Dinamiche Compless, I-50019 Sesto Fiorentino, Italy
[7] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy
关键词
LARGEST LYAPUNOV EXPONENT; STATISTICAL-MECHANICS; PHASE-TRANSITION; SCALING LAW;
D O I
10.1103/PhysRevE.84.066211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the dynamical properties of the canonical ordered phase of the Hamiltonian mean-field (HMF) model, in which N particles, globally coupled via pairwise attractive interactions, form a rotating cluster. Using a combination of numerical and analytical arguments, we first show that the largest Lyapunov exponent remains strictly positive in the infinite-size limit, converging to its asymptotic value with 1/ln N corrections. We then elucidate the scaling laws ruling the behavior of this asymptotic value in the critical region separating the ordered, clustered phase and the disordered phase present at high-energy densities. We also show that the full spectrum of Lyapunov exponents consists of a bulk component converging to the (zero) value taken by a test oscillator forced by the mean field, plus subextensive bands of O(ln N) exponents taking finite values. We finally investigate the robustness of these results by studying a "2D" extension of the HMF model where each particle is endowed with 4 degrees of freedom, thus allowing the emergence of chaos at the level of a single particle. Altogether, these results illustrate the subtle effects of global (or long-range) coupling and the importance of the order in which the infinite-time and infinite-size limits are taken: For an infinite-size HMF system represented by the Vlasov equation, no chaos is present, while chaos exists and subsists for any finite system size.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] The Vlasov equation and the Hamiltonian mean-field model
    Barré, J
    Bouchet, F
    Dauxois, T
    Ruffo, S
    Yamaguchi, YY
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (01) : 177 - 183
  • [2] Glassy phase in the Hamiltonian mean-field model
    Pluchino, A
    Latora, V
    Rapisarda, A
    [J]. PHYSICAL REVIEW E, 2004, 69 (05): : 4
  • [3] Disorder Chaos in the Spherical Mean-Field Model
    Wei-Kuo Chen
    Hsi-Wei Hsieh
    Chii-Ruey Hwang
    Yuan-Chung Sheu
    [J]. Journal of Statistical Physics, 2015, 160 : 417 - 429
  • [4] Disorder Chaos in the Spherical Mean-Field Model
    Chen, Wei-Kuo
    Hsieh, Hsi-Wei
    Hwang, Chii-Ruey
    Sheu, Yuan-Chung
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2015, 160 (02) : 417 - 429
  • [5] Analytical results on the magnetization of the Hamiltonian Mean-Field model
    Bachelard, R.
    Chandre, C.
    Ciani, A.
    Fanelli, D.
    Yamaguchi, Y. Y.
    [J]. PHYSICS LETTERS A, 2009, 373 (46) : 4239 - 4245
  • [6] Tricritical point in the quantum Hamiltonian mean-field model
    Schmid, Harald
    Dieplinger, Johannes
    Solfanelli, Andrea
    Succi, Sauro
    Ruffo, Stefano
    [J]. PHYSICAL REVIEW E, 2022, 106 (02)
  • [7] Onset of synchronization in the disordered Hamiltonian mean-field model
    Restrepo, Juan G.
    Meiss, James D.
    [J]. PHYSICAL REVIEW E, 2014, 89 (05):
  • [8] Chaos and statistical mechanics in the Hamiltonian mean field model
    Latora, V
    Rapisarda, A
    Ruffo, S
    [J]. PHYSICA D, 1999, 131 (1-4): : 38 - 54
  • [9] MEAN-FIELD OUT OF CHAOS
    ZELEVINSKY, VG
    [J]. NUCLEAR PHYSICS A, 1993, 555 (01) : 109 - 127
  • [10] Geometry and molecular dynamics of the Hamiltonian mean-field model in a magnetic field
    Araujo, Rubia
    Miranda Filho, L. H.
    Santos, Fernando A. N.
    Coutinho-Filho, M. D.
    [J]. PHYSICAL REVIEW E, 2021, 103 (01)