Analytical results on the magnetization of the Hamiltonian Mean-Field model

被引:6
|
作者
Bachelard, R. [1 ]
Chandre, C. [2 ]
Ciani, A. [3 ,4 ]
Fanelli, D. [3 ,4 ]
Yamaguchi, Y. Y. [5 ]
机构
[1] Synchrotron Soleil, LOrme Merisiers, F-91192 Gif Sur Yvette, France
[2] Aix Marseille Univ, CNRS, Ctr Phys Theor, F-13288 Marseille 09, France
[3] Univ Florence, Dipartimento Energet Sergio Stecco, I-50139 Florence, Italy
[4] Ist Nazl Fis Nucl, Milan, Italy
[5] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
关键词
Vlasov equation; Hamiltonian systems; Out-of-equilibrium phase transition;
D O I
10.1016/j.physleta.2009.09.037
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The violent relaxation and the metastable states of the Hamiltonian Mean-Field model, a paradigmatic system of long-range interactions, is studied using a Hamiltonian formalism. Rigorous results are derived algebraically for the time evolution of selected macroscopic observables, e.g., the global magnetization. The high- and low-energy limits are investigated and the analytical predictions are compared with direct N-body simulations. The method we use enables us to re-interpret the out-of-equilibrium phase transition separating magnetized and (almost) unmagnetized regimes. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4239 / 4245
页数:7
相关论文
共 50 条
  • [1] Chaos in the Hamiltonian mean-field model
    Ginelli, Francesco
    Takeuchi, Kazumasa A.
    Chate, Hugues
    Politi, Antonio
    Torcini, Alessandro
    [J]. PHYSICAL REVIEW E, 2011, 84 (06)
  • [2] The Vlasov equation and the Hamiltonian mean-field model
    Barré, J
    Bouchet, F
    Dauxois, T
    Ruffo, S
    Yamaguchi, YY
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (01) : 177 - 183
  • [3] Glassy phase in the Hamiltonian mean-field model
    Pluchino, A
    Latora, V
    Rapisarda, A
    [J]. PHYSICAL REVIEW E, 2004, 69 (05): : 4
  • [4] Tricritical point in the quantum Hamiltonian mean-field model
    Schmid, Harald
    Dieplinger, Johannes
    Solfanelli, Andrea
    Succi, Sauro
    Ruffo, Stefano
    [J]. PHYSICAL REVIEW E, 2022, 106 (02)
  • [5] Onset of synchronization in the disordered Hamiltonian mean-field model
    Restrepo, Juan G.
    Meiss, James D.
    [J]. PHYSICAL REVIEW E, 2014, 89 (05):
  • [6] Spontaneous magnetization of ferromagnet in mean-field Heisenberg model
    Durajski, Artur P.
    Olesik, Anna B.
    Auguscik, Anita E.
    [J]. MODERN PHYSICS LETTERS B, 2019, 33 (04):
  • [7] Geometry and molecular dynamics of the Hamiltonian mean-field model in a magnetic field
    Araujo, Rubia
    Miranda Filho, L. H.
    Santos, Fernando A. N.
    Coutinho-Filho, M. D.
    [J]. PHYSICAL REVIEW E, 2021, 103 (01)
  • [8] Core-Halo Distribution in the Hamiltonian Mean-Field Model
    Pakter, Renato
    Levin, Yan
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (20)
  • [9] Numerical resolution of the Vlasov equation for the Hamiltonian Mean-Field model
    de Buyl, Pierre
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (08) : 2133 - 2139
  • [10] Rigorous results on the bipartite mean-field model
    Fedele, Micaela
    Unguendoli, Francesco
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (38)