Application of Cairns-Tsallis distribution to the dipole-type Hamiltonian mean-field model

被引:3
|
作者
Sanchez, Ewin [1 ,2 ]
Atenas, Boris [3 ]
机构
[1] Univ Serena, Inst Invest Multidisciplinario Ciencia & Tecnol, La Serena 170000, Chile
[2] Univ Serena, Dept Fis, Ave Juan Cisternas 1200, La Serena 170000, Chile
[3] Univ Tarapaca, Fac Ciencias, Dept Fis, Casilla 7-D, Arica, Chile
关键词
PLASMA; SUPERSTATISTICS; ELECTRONS; KAPPA;
D O I
10.1103/PhysRevE.108.044123
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We found that the rare distribution of velocities in quasisteady states of the dipole-type Hamiltonian mean-field model can be explained by the Cairns-Tsallis distribution, which has been used to describe nonthermal electron populations of some plasmas. This distribution gives us two interesting parameters which allow an adequate interpretation of the output data obtained through molecular dynamics simulations, namely, the characteristic parameter q of the so-called nonextensive systems and the alpha parameter, which can be seen as an indicator of the number of particles with nonequilibrium behavior in the distribution. Our analysis shows that fit parameters obtained for the dipole-type Hamiltonian mean-field simulated system are ad hoc with some nonthermality and nonextensivity constraints found by different authors for plasma systems described through the Cairns-Tsallis distribution.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Out-of-equilibrium phase transitions in the Hamiltonian mean-field model: A closer look
    Staniscia, F.
    Chavanis, P. H.
    De Ninno, G.
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [32] Nondiagonalizable and nondivergent susceptibility tensor in the Hamiltonian mean-field model with asymmetric momentum distributions
    Yamaguchi, Yoshiyuki Y.
    PHYSICAL REVIEW E, 2015, 92 (03):
  • [33] Core-halo quasi-stationary states in the Hamiltonian mean-field model
    Konishi, Eiji
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (12):
  • [34] A MODEL OF QUANTUM SCALAR DIPOLE-TYPE X-EXOTIC-BOSON FIELD AT FINITE-TEMPERATURE
    KOZLOV, GA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1994, 107 (06): : 819 - 829
  • [35] MEAN-FIELD FOR THE VIBRON MODEL - DIPOLE-MOMENT FUNCTION OF DIATOMIC-MOLECULES
    MENGONI, A
    SHIRAI, T
    PHYSICAL REVIEW A, 1994, 50 (01): : 863 - 866
  • [36] Application of large deviation theory to the mean-field φ4-model
    Hahn, I
    Kastner, M
    EUROPEAN PHYSICAL JOURNAL B, 2006, 50 (1-2): : 311 - 314
  • [37] Critical exponent for the Lyapunov exponent and phase transitions-the generalized Hamiltonian mean-field model
    Silva Jr, M. F. P.
    Rocha Filho, T. M.
    Elskens, Y.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (21)
  • [38] Balancing long-range interactions and quantum pressure: Solitons in the Hamiltonian mean-field model
    Plestid, Ryan
    O'Delll, D. H. J.
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [39] Shell-model Hamiltonian from self-consistent mean-field model: N = Z nuclei
    Kaneko, Kazunari
    Mizusaki, Takahiro
    Sun, Yang
    Hasegawa, Munetake
    PHYSICS LETTERS B, 2009, 679 (03) : 214 - 218
  • [40] Mean-Field-Type Model Predictive Control: An Application to Water Distribution Networks
    Barreiro-Gomez, Julian
    Tembine, Hamidou
    IEEE ACCESS, 2019, 7 : 135332 - 135339