A Nonstochastic Optimization Algorithm for Neural-Network Quantum States

被引:3
|
作者
Li, Xiang [1 ,2 ]
Huang, Jia-Cheng [1 ,2 ]
Zhang, Guang-Ze [1 ,2 ]
Li, Hao-En [1 ,2 ]
Cao, Chang-Su [1 ,2 ,3 ]
Lv, Dingshun [3 ]
Hu, Han-Shi [1 ,2 ]
机构
[1] Tsinghua Univ, Minist Educ, Dept Chem, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Engn Res Ctr Adv Rare Earth Mat, Minist Educ, Beijing 100084, Peoples R China
[3] ByteDance Res, Beijing 100089, Peoples R China
基金
中国国家自然科学基金;
关键词
BATH CONFIGURATION-INTERACTION; MONTE-CARLO;
D O I
10.1021/acs.jctc.3c00831
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Neural-network quantum states (NQS) employ artificial neural networks to encode many-body wave functions in a second quantization through variational Monte Carlo (VMC). They have recently been applied to accurately describe electronic wave functions of molecules and have shown the challenges in efficiency compared with traditional quantum chemistry methods. Here, we introduce a general nonstochastic optimization algorithm for NQS in chemical systems, which deterministically generates a selected set of important configurations simultaneously with energy evaluation of NQS. This method bypasses the need for Markov-chain Monte Carlo within the VMC framework, thereby accelerating the entire optimization process. Furthermore, this newly developed nonstochastic optimization algorithm for NQS offers comparable or superior accuracy compared to its stochastic counterpart and ensures more stable convergence. The application of this model to test molecules exhibiting strong electron correlations provides further insight into the performance of NQS in chemical systems and opens avenues for future enhancements.
引用
收藏
页码:8156 / 8165
页数:10
相关论文
共 50 条
  • [21] Neural-network quantum states for ultra-cold Fermi gases
    Kim, Jane
    Pescia, Gabriel
    Fore, Bryce
    Nys, Jannes
    Carleo, Giuseppe
    Gandolfi, Stefano
    Hjorth-Jensen, Morten
    Lovato, Alessandro
    COMMUNICATIONS PHYSICS, 2024, 7 (01)
  • [22] Transfer Learning for Larger, Broader, and Deeper Neural-Network Quantum States
    Zen, Remmy
    Bressan, Stephane
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2021, PT II, 2021, 12924 : 207 - 219
  • [23] Dilute neutron star matter from neural-network quantum states
    Fore, Bryce
    Kim, Jane M.
    Carleo, Giuseppe
    Hjorth-Jensen, Morten
    Lovato, Alessandro
    Piarulli, Maria
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [24] Variational Neural-Network Ansatz for Steady States in Open Quantum Systems
    Vicentini, Filippo
    Biella, Alberto
    Regnault, Nicolas
    Ciuti, Cristiano
    PHYSICAL REVIEW LETTERS, 2019, 122 (25)
  • [25] Unifying neural-network quantum states and correlator product states via tensor networks
    Clark, Stephen R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (13)
  • [26] Neural-network quantum state tomography
    Torlai, Giacomo
    Mazzola, Guglielmo
    Carrasquilla, Juan
    Troyer, Matthias
    Melko, Roger
    Carleo, Giuseppe
    NATURE PHYSICS, 2018, 14 (05) : 447 - +
  • [27] Neural-network quantum state tomography
    Koutny, Dominik
    Motka, Libor
    Hradil, Zdenek
    Rehacek, Jaroslav
    Sanchez-Soto, Luis L.
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [28] Neural-network quantum state tomography
    Giacomo Torlai
    Guglielmo Mazzola
    Juan Carrasquilla
    Matthias Troyer
    Roger Melko
    Giuseppe Carleo
    Nature Physics, 2018, 14 : 447 - 450
  • [29] NEURAL-NETWORK OPTIMIZATION FOR REDUNDANCY ALLOCATION
    VINOD, VV
    GHOSE, S
    MICROELECTRONICS AND RELIABILITY, 1994, 34 (01): : 115 - 123
  • [30] Distilling the Essential Elements of Nuclear Binding via Neural-Network Quantum States
    Gnech, Alex
    Fore, Bryce
    Tropiano, Anthony J.
    Lovato, Alessandro
    PHYSICAL REVIEW LETTERS, 2024, 133 (14)