Distilling the Essential Elements of Nuclear Binding via Neural-Network Quantum States

被引:3
|
作者
Gnech, Alex [1 ,2 ,3 ]
Fore, Bryce [4 ]
Tropiano, Anthony J. [4 ]
Lovato, Alessandro [3 ,4 ]
机构
[1] European Ctr Theoret Studies Nucl Phys & Related A, Str Tabarelle 286, I-38123 Villazzano, TN, Italy
[2] Fdn Bruno Kessler, Str Tabarelle 286, I-38123 Villazzano, TN, Italy
[3] INFN TIFPA Trento Inst Fundamental Phys & Applicat, I-38123 Trento, Italy
[4] Argonne Natl Lab, Phys Div, Argonne, IL 60439 USA
关键词
D O I
10.1103/PhysRevLett.133.142501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To distill the essential elements of nuclear binding, we seek the simplest Hamiltonian capable of modeling atomic nuclei with percent-level accuracy. A critical aspect of this endeavor consists of accurately solving the quantum many-body problem without incurring an exponential computing cost with the number of nucleons. We address this challenge by leveraging a variational Monte Carlo method based on a highly expressive neural-network quantum state ansatz. In addition to computing binding energies and charge radii of nuclei with up to A = 20 nucleons, by evaluating their magnetic moments, we demonstrate that neural-network quantum states are able to correctly capture the self-emerging nuclear shell structure. To this end, we introduce a novel computational protocol based on adding an external magnetic field to the nuclear Hamiltonian, which allows the neural network to learn the preferred polarization of the nucleus within the given magnetic field.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Investigating Network Parameters in Neural-Network Quantum States
    Nomura, Yusuke
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (05)
  • [2] Unifying neural-network quantum states and correlator product states via tensor networks
    Clark, Stephen R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (13)
  • [3] Neural-network quantum states at finite temperature
    Irikura, Naoki
    Saito, Hiroki
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [4] Finding Quantum Critical Points with Neural-Network Quantum States
    Zen, Remmy
    My, Long
    Tan, Ryan
    Hebert, Frederic
    Gattobigio, Mario
    Miniatura, Christian
    Poletti, Dario
    Bressan, Stephane
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1962 - 1969
  • [5] Scaling of Neural-Network Quantum States for Time Evolution
    Lin, Sheng-Hsuan
    Pollmann, Frank
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (05):
  • [6] Transfer learning for scalability of neural-network quantum states
    Zen, Remmy
    My, Long
    Tang, Ryan
    Hebert, Frederic
    Gattobigio, Mario
    Miniatura, Christian
    Poletti, Dario
    Bressan, Stephane
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [7] Real time evolution with neural-network quantum states
    Gutierrez, Irene Lopez
    Mend, Christian B.
    QUANTUM, 2022, 6 : 1 - 11
  • [8] A Nonstochastic Optimization Algorithm for Neural-Network Quantum States
    Li, Xiang
    Huang, Jia-Cheng
    Zhang, Guang-Ze
    Li, Hao-En
    Cao, Chang-Su
    Lv, Dingshun
    Hu, Han-Shi
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (22) : 8156 - 8165
  • [9] Hidden-nucleons neural-network quantum states for the nuclear many-body problem
    Lovato, Alessandro
    Adams, Corey
    Carleo, Giuseppe
    Rocco, Noemi
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [10] Neural-network quantum states for many-body physics
    Medvidovic, Matija
    Moreno, Javier Robledo
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (07):