Distilling the Essential Elements of Nuclear Binding via Neural-Network Quantum States

被引:3
|
作者
Gnech, Alex [1 ,2 ,3 ]
Fore, Bryce [4 ]
Tropiano, Anthony J. [4 ]
Lovato, Alessandro [3 ,4 ]
机构
[1] European Ctr Theoret Studies Nucl Phys & Related A, Str Tabarelle 286, I-38123 Villazzano, TN, Italy
[2] Fdn Bruno Kessler, Str Tabarelle 286, I-38123 Villazzano, TN, Italy
[3] INFN TIFPA Trento Inst Fundamental Phys & Applicat, I-38123 Trento, Italy
[4] Argonne Natl Lab, Phys Div, Argonne, IL 60439 USA
关键词
D O I
10.1103/PhysRevLett.133.142501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To distill the essential elements of nuclear binding, we seek the simplest Hamiltonian capable of modeling atomic nuclei with percent-level accuracy. A critical aspect of this endeavor consists of accurately solving the quantum many-body problem without incurring an exponential computing cost with the number of nucleons. We address this challenge by leveraging a variational Monte Carlo method based on a highly expressive neural-network quantum state ansatz. In addition to computing binding energies and charge radii of nuclei with up to A = 20 nucleons, by evaluating their magnetic moments, we demonstrate that neural-network quantum states are able to correctly capture the self-emerging nuclear shell structure. To this end, we introduce a novel computational protocol based on adding an external magnetic field to the nuclear Hamiltonian, which allows the neural network to learn the preferred polarization of the nucleus within the given magnetic field.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Neural-network quantum states for ultra-cold Fermi gases
    Kim, Jane
    Pescia, Gabriel
    Fore, Bryce
    Nys, Jannes
    Carleo, Giuseppe
    Gandolfi, Stefano
    Hjorth-Jensen, Morten
    Lovato, Alessandro
    COMMUNICATIONS PHYSICS, 2024, 7 (01)
  • [22] Transfer Learning for Larger, Broader, and Deeper Neural-Network Quantum States
    Zen, Remmy
    Bressan, Stephane
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2021, PT II, 2021, 12924 : 207 - 219
  • [23] Dilute neutron star matter from neural-network quantum states
    Fore, Bryce
    Kim, Jane M.
    Carleo, Giuseppe
    Hjorth-Jensen, Morten
    Lovato, Alessandro
    Piarulli, Maria
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [24] Variational Neural-Network Ansatz for Steady States in Open Quantum Systems
    Vicentini, Filippo
    Biella, Alberto
    Regnault, Nicolas
    Ciuti, Cristiano
    PHYSICAL REVIEW LETTERS, 2019, 122 (25)
  • [25] Essential elements for nuclear binding
    Lu, Bing-Nan
    Li, Ning
    Elhatisari, Serdar
    Lee, Dean
    Epelbaum, Evgeny
    Meissner, Ulf-G
    PHYSICS LETTERS B, 2019, 797
  • [26] Neural-network quantum state tomography
    Torlai, Giacomo
    Mazzola, Guglielmo
    Carrasquilla, Juan
    Troyer, Matthias
    Melko, Roger
    Carleo, Giuseppe
    NATURE PHYSICS, 2018, 14 (05) : 447 - +
  • [27] Neural-network quantum state tomography
    Koutny, Dominik
    Motka, Libor
    Hradil, Zdenek
    Rehacek, Jaroslav
    Sanchez-Soto, Luis L.
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [28] Neural-network quantum state tomography
    Giacomo Torlai
    Guglielmo Mazzola
    Juan Carrasquilla
    Matthias Troyer
    Roger Melko
    Giuseppe Carleo
    Nature Physics, 2018, 14 : 447 - 450
  • [29] Entanglement classification via neural network quantum states
    Harney, Cillian
    Pirandola, Stefano
    Ferraro, Alessandro
    Paternostro, Mauro
    NEW JOURNAL OF PHYSICS, 2020, 22 (04)
  • [30] Solving the nuclear pairing model with neural network quantum states
    Rigo, Mauro
    Hall, Benjamin
    Hjorth-Jensen, Morten
    Lovato, Alessandro
    Pederiva, Francesco
    PHYSICAL REVIEW E, 2023, 107 (02)