Variational Neural-Network Ansatz for Steady States in Open Quantum Systems

被引:149
|
作者
Vicentini, Filippo [1 ]
Biella, Alberto [1 ]
Regnault, Nicolas [2 ]
Ciuti, Cristiano [1 ]
机构
[1] Univ Paris, Lab Mat & Phenomenes Quant, CNRS, F-75013 Paris, France
[2] Univ Paris, Lab Phys Ecole Normale Super, Univ PSL, Sorbonne Paris Cite,Sorbonne Univ,CNRS,ENS, F-75005 Paris, France
基金
欧洲研究理事会;
关键词
BOLTZMANN MACHINES; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; DRIVEN; QUTIP; JULIA;
D O I
10.1103/PhysRevLett.122.250503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a general variational approach to determine the steady state of open quantum lattice systems via a neural-network approach. The steady-state density matrix of the lattice system is constructed via a purified neural-network Ansatz in an extended Hilbert space with ancillary degrees of freedom. The variational minimization of cost functions associated to the master equation can be performed using a Markov chain Monte Carlo sampling. As a first application and proof of principle, we apply the method to the dissipative quantum transverse Ising model.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems
    Nagy, Alexandra
    Savona, Vincenzo
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (25)
  • [2] Variational Neural-Network Ansatz for Continuum Quantum Field Theory
    Martyn, John M.
    Najafi, Khadijeh
    Luo, Di
    [J]. PHYSICAL REVIEW LETTERS, 2023, 131 (08)
  • [3] Variational Quantum Algorithms for the Steady States of Open Quantum Systems
    刘环宇
    孙太平
    吴玉椿
    郭国平
    [J]. Chinese Physics Letters, 2021, 38 (08) : 16 - 21
  • [4] Variational Quantum Algorithms for the Steady States of Open Quantum Systems
    Liu, Huan-Yu
    Sun, Tai-Ping
    Wu, Yu-Chun
    Guo, Guo-Ping
    [J]. CHINESE PHYSICS LETTERS, 2021, 38 (08)
  • [5] Quantum transport in open spin chains using neural-network quantum states
    Mellak, Johannes
    Arrigoni, Enrico
    Pock, Thomas
    von der Linden, Wolfgang
    [J]. PHYSICAL REVIEW B, 2023, 107 (20)
  • [6] Transition from ergodic to many-body localization regimes in open quantum systems in terms of the neural-network ansatz
    Yusipov, I. I.
    Kozinov, E. A.
    Laptyeva, T., V
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2022, 30 (03): : 268 - 275
  • [7] Neural-network quantum states for periodic systems in continuous space
    Pescia, Gabriel
    Han, Jiequn
    Lovato, Alessandro
    Lu, Jianfeng
    Carleo, Giuseppe
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [8] Variational optimization of the amplitude of neural-network quantum many-body ground states
    Wang, Jia-Qi
    Wu, Han-Qing
    He, Rong-Qiang
    Lu, Zhong-Yi
    [J]. PHYSICAL REVIEW B, 2024, 109 (24)
  • [9] Investigating Network Parameters in Neural-Network Quantum States
    Nomura, Yusuke
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (05)
  • [10] Variational Monte Carlo Calculations of A ≤ 4 Nuclei with an Artificial Neural-Network Correlator Ansatz
    Adams, Corey
    Carleo, Giuseppe
    Lovato, Alessandro
    Rocco, Noemi
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (02)