A Nonstochastic Optimization Algorithm for Neural-Network Quantum States

被引:3
|
作者
Li, Xiang [1 ,2 ]
Huang, Jia-Cheng [1 ,2 ]
Zhang, Guang-Ze [1 ,2 ]
Li, Hao-En [1 ,2 ]
Cao, Chang-Su [1 ,2 ,3 ]
Lv, Dingshun [3 ]
Hu, Han-Shi [1 ,2 ]
机构
[1] Tsinghua Univ, Minist Educ, Dept Chem, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Engn Res Ctr Adv Rare Earth Mat, Minist Educ, Beijing 100084, Peoples R China
[3] ByteDance Res, Beijing 100089, Peoples R China
基金
中国国家自然科学基金;
关键词
BATH CONFIGURATION-INTERACTION; MONTE-CARLO;
D O I
10.1021/acs.jctc.3c00831
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Neural-network quantum states (NQS) employ artificial neural networks to encode many-body wave functions in a second quantization through variational Monte Carlo (VMC). They have recently been applied to accurately describe electronic wave functions of molecules and have shown the challenges in efficiency compared with traditional quantum chemistry methods. Here, we introduce a general nonstochastic optimization algorithm for NQS in chemical systems, which deterministically generates a selected set of important configurations simultaneously with energy evaluation of NQS. This method bypasses the need for Markov-chain Monte Carlo within the VMC framework, thereby accelerating the entire optimization process. Furthermore, this newly developed nonstochastic optimization algorithm for NQS offers comparable or superior accuracy compared to its stochastic counterpart and ensures more stable convergence. The application of this model to test molecules exhibiting strong electron correlations provides further insight into the performance of NQS in chemical systems and opens avenues for future enhancements.
引用
收藏
页码:8156 / 8165
页数:10
相关论文
共 50 条
  • [1] Improved optimization for the neural-network quantum states and tests on the chromium dimer
    Li, Xiang
    Huang, Jia-Cheng
    Zhang, Guang-Ze
    Li, Hao-En
    Shen, Zhu-Ping
    Zhao, Chen
    Li, Jun
    Hu, Han-Shi
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (23):
  • [2] Investigating Network Parameters in Neural-Network Quantum States
    Nomura, Yusuke
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (05)
  • [3] Neural-network quantum states at finite temperature
    Irikura, Naoki
    Saito, Hiroki
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [4] Finding Quantum Critical Points with Neural-Network Quantum States
    Zen, Remmy
    My, Long
    Tan, Ryan
    Hebert, Frederic
    Gattobigio, Mario
    Miniatura, Christian
    Poletti, Dario
    Bressan, Stephane
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1962 - 1969
  • [5] Scaling of Neural-Network Quantum States for Time Evolution
    Lin, Sheng-Hsuan
    Pollmann, Frank
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (05):
  • [6] Transfer learning for scalability of neural-network quantum states
    Zen, Remmy
    My, Long
    Tang, Ryan
    Hebert, Frederic
    Gattobigio, Mario
    Miniatura, Christian
    Poletti, Dario
    Bressan, Stephane
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [7] Real time evolution with neural-network quantum states
    Gutierrez, Irene Lopez
    Mend, Christian B.
    QUANTUM, 2022, 6 : 1 - 11
  • [8] Variational optimization of the amplitude of neural-network quantum many-body ground states
    Wang, Jia-Qi
    Wu, Han-Qing
    He, Rong-Qiang
    Lu, Zhong-Yi
    PHYSICAL REVIEW B, 2024, 109 (24)
  • [9] STRUCTURE OPTIMIZATION OF FUZZY NEURAL-NETWORK BY GENETIC ALGORITHM
    ISHIGAMI, H
    FUKUDA, T
    SHIBATA, T
    ARAI, F
    FUZZY SETS AND SYSTEMS, 1995, 71 (03) : 257 - 264
  • [10] Neural-network quantum states for many-body physics
    Medvidovic, Matija
    Moreno, Javier Robledo
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (07):