Finite-size scaling of the random-field Ising model above the upper critical dimension

被引:8
|
作者
Fytas, Nikolaos G. [1 ]
Martin-Mayor, Victor [2 ,3 ]
Parisi, Giorgio [4 ,5 ]
Picco, Marco [6 ,7 ]
Sourlas, Nicolas [8 ,9 ]
机构
[1] Univ Essex, Dept Math Sci, Colchester CO4 3SQ, England
[2] Univ Complutense, Dept Fis Teor 1, Madrid 28040, Spain
[3] Inst Biocomp & Fis Sistemas Complejos BIFI, Zaragoza 50009, Spain
[4] Sapienza Univ Roma, Dipartimento Fis, Ple Aldo Moro 2, I-00185 Rome, Italy
[5] CNR, Sez Roma 1, INFN, IPCF, Ple A Moro 2, I-00185 Rome, Italy
[6] Sorbonne Univ, Lab Phys Theor & Hautes Energies, UMR 7589, 4 Pl Jussieu, F-75252 Paris 05, France
[7] CNRS, 4 Pl Jussieu, F-75252 Paris 05, France
[8] Univ Paris 06, Ecole Normale Super, Lab Phys Theor, CNRS,Unite Mixte Rech,PARIS VI, 24 Rue Lhomond, F-75231 Paris 05, France
[9] Univ Paris 06, Ecole Normale Super, PARIS VI, 24 Rue Lhomond, F-75231 Paris 05, France
基金
英国工程与自然科学研究理事会;
关键词
CRITICAL EXPONENTS; PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; RANDOM-SYSTEMS; UNIVERSALITY; HYSTERESIS; STATE;
D O I
10.1103/PhysRevE.108.044146
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Finite-size scaling above the upper critical dimension is a long-standing puzzle in the field of statistical physics. Even for pure systems various scaling theories have been suggested, partially corroborated by numerical simulations. In the present manuscript we address this problem in the even more complicated case of disordered systems. In particular, we investigate the scaling behavior of the random-field Ising model at dimension D=7, i.e., above its upper critical dimension D-u=6, by employing extensive ground-state numerical simulations. Our results confirm the hypothesis that at dimensions D>D-u, linear length scale L should be replaced in finite-size scaling expressions by the effective scale L-eff=L-D/Du. Via a fitted version of the quotients method that takes this modification, but also subleading scaling corrections into account, we compute the critical point of the transition for Gaussian random fields and provide estimates for the full set of critical exponents. Thus, our analysis indicates that this modified version of finite-size scaling is successful also in the context of the random-field problem.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Scaling of the random-field Ising model at zero temperature
    Swift, MR
    Bray, AJ
    Maritan, A
    Cieplak, M
    Banavar, JR
    EUROPHYSICS LETTERS, 1997, 38 (04): : 273 - 278
  • [32] SCALING AND CRITICAL SLOWING DOWN IN RANDOM-FIELD ISING SYSTEMS
    FISHER, DS
    PHYSICAL REVIEW LETTERS, 1986, 56 (05) : 416 - 419
  • [33] Modified scaling relation for the random-field Ising model
    Nowak, U
    Usadel, KD
    Esser, J
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 250 (1-4) : 1 - 7
  • [34] RANDOM ISING-MODEL IN A TRANSVERSE FIELD - A FINITE-SIZE APPROACH
    DEFELICIO, JRD
    PHYSICS LETTERS A, 1994, 191 (5-6) : 389 - 392
  • [35] The Finite-Size Scaling Study of the Ising Model for the Fractals
    Z. Merdan
    M. Bayirli
    A. Günen
    M. Bülbül
    International Journal of Theoretical Physics, 2016, 55 : 2031 - 2039
  • [36] The Finite-Size Scaling Study of the Ising Model for the Fractals
    Merdan, Z.
    Bayirli, M.
    Gunen, A.
    Bulbul, M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (04) : 2031 - 2039
  • [37] Finite-size scaling analysis of the avalanches in the three-dimensional Gaussian random-field Ising model with metastable dynamics -: art. no. 134421
    Pérez-Reche, FJ
    Vives, E
    PHYSICAL REVIEW B, 2003, 67 (13):
  • [38] Finite-size critical scaling in Ising spin glasses in the mean-field regime
    Aspelmeier, T.
    Katzgraber, Helmut G.
    Larson, Derek
    Moore, M. A.
    Wittmann, Matthew
    Yeo, Joonhyun
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [39] Domain scaling and marginality breaking in the random-field Ising model
    Moore, ED
    Stinchcombe, RB
    deQueiroz, SLA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (23): : 7409 - 7438
  • [40] Finite-size scaling for quantum criticality above the upper critical dimension: Superfluid-Mott-insulator transition in three dimensions
    Kato, Yasuyuki
    Kawashima, Naoki
    PHYSICAL REVIEW E, 2010, 81 (01):