Finite-size scaling of the random-field Ising model above the upper critical dimension

被引:8
|
作者
Fytas, Nikolaos G. [1 ]
Martin-Mayor, Victor [2 ,3 ]
Parisi, Giorgio [4 ,5 ]
Picco, Marco [6 ,7 ]
Sourlas, Nicolas [8 ,9 ]
机构
[1] Univ Essex, Dept Math Sci, Colchester CO4 3SQ, England
[2] Univ Complutense, Dept Fis Teor 1, Madrid 28040, Spain
[3] Inst Biocomp & Fis Sistemas Complejos BIFI, Zaragoza 50009, Spain
[4] Sapienza Univ Roma, Dipartimento Fis, Ple Aldo Moro 2, I-00185 Rome, Italy
[5] CNR, Sez Roma 1, INFN, IPCF, Ple A Moro 2, I-00185 Rome, Italy
[6] Sorbonne Univ, Lab Phys Theor & Hautes Energies, UMR 7589, 4 Pl Jussieu, F-75252 Paris 05, France
[7] CNRS, 4 Pl Jussieu, F-75252 Paris 05, France
[8] Univ Paris 06, Ecole Normale Super, Lab Phys Theor, CNRS,Unite Mixte Rech,PARIS VI, 24 Rue Lhomond, F-75231 Paris 05, France
[9] Univ Paris 06, Ecole Normale Super, PARIS VI, 24 Rue Lhomond, F-75231 Paris 05, France
基金
英国工程与自然科学研究理事会;
关键词
CRITICAL EXPONENTS; PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; RANDOM-SYSTEMS; UNIVERSALITY; HYSTERESIS; STATE;
D O I
10.1103/PhysRevE.108.044146
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Finite-size scaling above the upper critical dimension is a long-standing puzzle in the field of statistical physics. Even for pure systems various scaling theories have been suggested, partially corroborated by numerical simulations. In the present manuscript we address this problem in the even more complicated case of disordered systems. In particular, we investigate the scaling behavior of the random-field Ising model at dimension D=7, i.e., above its upper critical dimension D-u=6, by employing extensive ground-state numerical simulations. Our results confirm the hypothesis that at dimensions D>D-u, linear length scale L should be replaced in finite-size scaling expressions by the effective scale L-eff=L-D/Du. Via a fitted version of the quotients method that takes this modification, but also subleading scaling corrections into account, we compute the critical point of the transition for Gaussian random fields and provide estimates for the full set of critical exponents. Thus, our analysis indicates that this modified version of finite-size scaling is successful also in the context of the random-field problem.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Scaling above the upper critical dimension in Ising models
    Parisi, G
    RuizLorenzo, JJ
    PHYSICAL REVIEW B, 1996, 54 (06) : R3698 - R3701
  • [22] ROUGHENING AND LOWER CRITICAL DIMENSION IN THE RANDOM-FIELD ISING-MODEL
    GRINSTEIN, G
    MA, SK
    PHYSICAL REVIEW LETTERS, 1982, 49 (09) : 685 - 688
  • [23] Scaling treatment of the random-field Ising model
    Stinchcombe, RB
    Moore, ED
    DeQueiroz, SLA
    EUROPHYSICS LETTERS, 1996, 35 (04): : 295 - 300
  • [24] When correlations exceed system size: finite-size scaling in free boundary conditions above the upper critical dimension
    Honchar, Yu.
    Berche, B.
    Holovatch, Yu.
    Kenna, R.
    CONDENSED MATTER PHYSICS, 2024, 27 (01)
  • [25] Lattice φ4 theory of finite-size effects above the upper critical dimension
    Chen, XS
    Dohm, V
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (07): : 1073 - 1105
  • [26] Critical behavior of the random-field Ising model
    Gofman, M
    Adler, J
    Aharony, A
    Harris, AB
    Schwartz, M
    PHYSICAL REVIEW B, 1996, 53 (10): : 6362 - 6384
  • [27] LOWER CRITICAL DIMENSION AND THE ROUGHENING TRANSITION OF THE RANDOM-FIELD ISING-MODEL
    PYTTE, E
    IMRY, Y
    MUKAMEL, D
    PHYSICAL REVIEW LETTERS, 1981, 46 (18) : 1173 - 1177
  • [28] Critical aspects of the random-field Ising model
    Nikolaos G. Fytas
    Panagiotis E. Theodorakis
    Ioannis Georgiou
    Ioannis Lelidis
    The European Physical Journal B, 2013, 86
  • [29] Critical aspects of the random-field Ising model
    Fytas, Nikolaos G.
    Theodorakis, Panagiotis E.
    Georgiou, Ioannis
    Lelidis, Ioannis
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (06):
  • [30] SCALING THEORY OF THE RANDOM-FIELD ISING-MODEL
    BRAY, AJ
    MOORE, MA
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (28): : L927 - L933